Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20333 dokumen yang sesuai dengan query
cover
Alicja Kwasniewska
"ABSTRAK
In this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video based estimation of patient vital signs and other health-related parameters. Additionally, potential challenges of using, storing and transferring sensitive patient data are discussed."
TASK, 2017
600 SBAG 21:4 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Raditya Nurfadillah
"Sistem rekomendasi menjadi salah satu kebutuhan utama bagi penyedia layanan e-commerce untuk memberikan saran rekomendasi produk sesuai dengan apa yang diinginkan oleh pengguna. Salah satu pendekatan yang paling banyak dilakukan dalam membangun sistem rekomendasi adalah collaborative filtering, dengan menggunakan data explicit feedback, yang dapat berupa review atau rating. Sistem rekomendasi dengan pendekatan collaborative filtering telah banyak dikembangkan dengan menggunakan metode machine learning dan metode deep learning. Penelitian ini berfokus untuk mengembangkan sistem rekomendasi dengan pendekatan collaborative filtering berbasis deep learning dengan menggunakan data gabungan review dan rating. Teknik deep learning yang digunakan diperkaya dengan word embeddings untuk dapat menangkap interaksi yang terdapat dalam data review. Penelitian ini menggunakan arsitektur yang diadopsi dari CARL. Modifikasi yang dilakukan pada CARL meliputi pengubahan optimizer dan penggunaan beberapa pretrained word embedding yang berbeda. Selain itu, penelitian ini juga membandingkan performa sistem rekomendasi yang diusulkan antara dataset berbahasa Inggris dan berbahasa Indonesia. Untuk melakukan evaluasi performa sistem rekomendasi yang dikembangkan, digunakan metrik evaluasi mean squared error (MSE). Hasil penelitian menunjukkan modifikasi model CARL (Review-based) dengan menggunakan optimizer Adam (CARL (Review-based) – Adam) menunjukkan performa terbaik dan dapat mengalahkan performa dari baseline model.

Recommender systems are one of the main needs for e-commerce to provide product recommendations according to what the users want. One of the most widely used approaches in developing recommender systems is collaborative filtering, using explicit feedback data, which can be in the form of reviews or ratings. Various collaborative filtering methods have been developed using machine learning and deep learning methods. This study focuses on developing deep learning-based recommender systems with collaborative filtering approach using combined reviews and ratings data. The deep learning technique that being used is enriched with word embeddings to capture the interactions contained in the review data. This study uses an architecture adopted from CARL. Modifications made to CARL include changing the optimizer and using several different pretrained word embeddings. This study also compares the performance of the proposed recommender systems between English datasets and Indonesian datasets. To evaluate the performance of the recommender systems, the mean squared error (MSE) evaluation metrics is used. The results showed that the modification of CARL (Review-based) model using Adam optimizer (CARL (Review-based) – Adam) showed the best performance and could beat the performance of the baseline model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"This book presents the concepts of big data, explores its analytics and technologies and their applications and develops an understanding of issues pertaining to the use of big data in multidisciplinary fields. It explores big data through the historical and technical background, architecture, open-source and commercial programming systems, analytics, state of practice in industry, and other topics"
Hershey, PA, USA: IGI Global, Engineering Science Reference (an imprint of IGI Global), 2018
005.7 HAN
Buku Teks SO  Universitas Indonesia Library
cover
Haya Ayu Fauziyyah
"Paduan super berbasis besi-nikel biasanya mengandung lebih dari delapan elemen paduan dan umum digunakan dalam aplikasi aerospace seperti pada komponen cakram turbin menjadikan perubahan komposisi dapat menyebabkan perubahan sifat mekanis yang signifikan. Paduan super ini mengandung 15–60% besi dan 25–45% nikel dan digunakan dalam bilah dan cakram mesin yang memerlukan sifat ekspansi termal rendah. Paduan super berbasis besi ini menarik untuk dipelajari karena karakteristik temperatur tinggi dan koefisien ekspansi termal yang rendah tetapi di sisi lain menawarkan harga yang lebih ekonomis. Dalam aplikasi temperatur tinggi kekuatan tarik akan berubah sesuai dengan temperaturnya sehingga rentan terjadi kegagalan. Sementara dalam aplikasi seperti turbin yang dalam penggunaannya sering ditemukan kegagalan karena bekerja pada putaran yang tinggi dan lingkungan abrasif dibutuhkan nilai kekerasan yang sesuai. Sehingga dibutuhkan sebuah solusi yang kompetitif dan efisien dalam proses desain dan rekayasa paduan super berbasis besi-nikel. Metode pembelajaran mesin deep learning regresi dapat menjadi solusi dalam memberikan prediksi kekuatan tarik, kekerasan dan titik lebur yang presisi untuk aplikasi tertentu sehingga tidak dibutuhkan eksperimen yang memakan waktu. Dalam penelitian ini dilakukan variasi parameter berupa arsitektur model, learning rate, test size, random state, batch size, dan epoch dalam rangka mencari parameter optimum bagi model C2P besi-nikel. Nilai akurasi optimum yang dihasilkan dengan matriks R2 sebesar 98,2% dan matriks RRMSE 4,12%. Nilai ini didapat menggunakan parameter yaitu 4 hidden layers dengan noda (128,128,128,128), learning rate sebesar 10-3, test size sebesar 0,2, random state sebesar 25, batch size sebesar 64, dan epoch sebesar 250.

Iron-nickel-based superalloys typically contain more than eight alloying elements and are commonly used in aerospace applications such as in turbine disc components where compositional changes can lead to significant changes in mechanical properties. This superalloy contains 15–60% iron and 25–45% nickel and is used in engine blades and discs where low thermal expansion properties are required. This iron-based super alloy is interesting to study because of its high temperature characteristics and low coefficient of thermal expansion, but on the other hand offers a more economical price. In high temperature applications the tensile strength will change according to the temperature so that it is susceptible to failure. Meanwhile, in applications such as turbines where failure is often found due to working at high rotations and an abrasive environment, an appropriate hardness value is required. So that a competitive and efficient solution is needed in the design and engineering process of iron-nickel-based super alloys. The deep learning regression machine learning method can be a solution in providing precise predictions of tensile strength, hardness and melting point for certain applications, eliminating the need for time-consuming experiments. In this study, various parameters were carried out in the form of model architecture, learning rate, test size, random state, batch size, and epoch in order to find the optimum parameters for the iron-nickel C2P model. The optimum accuracy value generated by the R2 matrix is 98.2% and the RRMSE matrix is 4.12%. This value is obtained using parameters, namely 4 hidden layers with dense (128,128,128,128), learning rate of 10-3, test size of 0.2, random state of 25, batch size of 64, and epoch of 250."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salsabila Aurellia
"Vital sign merupakan parameter fisiologis yang penting dalam melihat adanya gangguan pada tubuh seseorang. Maka dari itu kebutuhan peralatan dalam pemeriksaan vital sign sangat tinggi. Saat ini vital sign dapat diketahui dengan cara pemeriksaan non-contact. Pemeriksaan vital sign dengan non-contact dapat menggunakan Photoplethysmography (PPG). Saat ini PPG sendiri telah banyak dikembangkan agar dapat membaca keseluruhan vital sign seperti detak jantung, tekanan darah, dan juga konsenstrasi oksigen di dalam darah (SpO2). Pada penelitian ini dirancang pengembangan PPG dengan bantuan pencitraan dalam membaca vital sign. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari pengukuran langsung yang telah dirancang agar dapat diproses menjadi sinyal Imaging Photoplethysmography (IPPG) yang baik. Dataset terdiri dari 13 orang laki-laki dan 17 orang perempuan. Dataset yang didapatkan akan dibagi menjadi beberapa scene yang kemudian diproses dalam metode yang diusungkan yaitu Discrete Fourier Transform (DFT) dan Deep Learning yaitu Convolutional Neural Network (CNN). Hasil penelitian ini berupa nilai RMSE dan MAE dimana saat penggunaan DFT menghasilkan masing masing 3,39 dan 1,38 dan dengan metode CNN arsitektur PhysNet menghasilkan 8,2151 dan 2,5976 untuk detak jantung, 3,3311 dan 1,0534 untuk tekanan darah, serta 3,6044 dan 1,1398 untuk SpO2.

Vital sign is an important physiological parameter in seeing a disturbance in a person's body. Therefore the need for equipment in vital sign examination is very high. Currently vital signs can be identified with non-contact examination. Examination of vital signs with non-contact can use Photoplethysmography (PPG). Currently PPG itself has been developed a lot so that it can read all vital signs such as heart rate, blood pressure, and also the concentration of oxygen in the blood (SpO2). In this study, the development of PPG was designed with the help of imaging in reading vital signs. The dataset used in this study is a dataset derived from direct measurements that have been designed to be processed into a good Imaging Photoplethysmography (IPPG) signal. The dataset consists of 13 men and 17 women. The dataset obtained will be divided into several scenes which are then processed using the proposed method, namely the Discrete Fourier Transform (DFT) and Deep Learning, namely the Convolutional Neural Network (CNN). The results of this study are RMSE and MAE values where when using the DFT they produce 3.39 and 1.38 respectively and with the PhysNet architecture CNN method they produce 8.2151 and 2.5976 for heart rate, 3.3311 and 1.0534 for blood pressure , and 3.6044 and 1.1398 for SpO2."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Ratriyani Shaniya
"Pelacakan objek dengan menggunakan metode penggabungan dari citra visual RGB dan termal inframerah (TIR) menjadi bidang yang menarik untuk dipelajari oleh para peneliti dalam beberapa tahun terakhir karena kemampuannya untuk bertahan pada situasi dan kondisi sulit yang berkaitan dengan iluminasi cahaya seperti dalam keadaan gelap dan cuaca buruk yang tidak dapat dideteksi dengan hanya menggunakan citra RGB saja. Pada kondisi normal pelacakan objek dengan menggunakan citra RGB akan memiliki akurasi yang bagus, namun pada kondisi gelap dan cuaca buruk citra termal inframerah dapat membantu untuk tetap dapat melakukan pelacakan objek. Penggabungan keunggulan dari citra RGB dan termal inframerah diharapkan akan saling membantu untuk menutupi kelemahan dari masing-masing metode. Namun pencarian metode penggabungan terbaik dari kedua masukan tersebut masih merupakan tantangan tersendiri. Pada penelitian ini metode High Level Fusion dengan arsitektur DeepSORT dan Kalman Filter Hierarchical Estimator digunakan untuk menggabungkan citra RGB dan termal inframerah yang berfokus pada penggabungan hasil estimasi pelacakan objek dari kedua masukan. Dari hasil penelitian ini didapatkan sebuah arsitektur penggabungan metode pelacakan yang dapat mengoptimalkan hasil pelacakan dari kedua masukan dan tetap dapat bekerja ketika salah satu masukan tidak berfungsi.

RGBT object tracking has become an interesting field study for many researchers because of the robustness to overcome adverse conditions related to illumination like total darkness and bad weather where RGB detection could not perform well. Object tracking with RGB images could have excellent performance in normal conditions, but in dark and difficult weather conditions thermal infrared images could help to maintain the tracking process. This integration from RGB and thermal infrared is expected to complement each other’s strengths and weaknesses. However, it is still challenging to find the best method that can combine those two different input information. In this research, high-level data fusion method and DeepSORT architecture were used as a baseline tracking with Kalman filter Hierarchical Estimator to combine RGB and Thermal estimates for object tracking. The study results presented the combination architecture to optimize the tracking result that can perform with both inputs and maintain function if one of the inputs falls through."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Witten, I.H. (Ian H.)
"Part I. Machine Learning Tools and Techniques: 1. What?s iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what?s been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer."
Amsterdam: Elsevier , 2011
006.312 WIT d
Buku Teks SO  Universitas Indonesia Library
cover
Daniel Adi Nugroho
"Dalam rangka melakukan pengendalian alih fungsi lahan pertanian diperlukan kuantifikasi luas dan sebaran lahan sawah, dimana salah satu metode yang efisien dalam pemetaan lahan baku sawah di wilayah tropis adalah dengan melakukan proses klasifikasi lahan baku sawah menggunakan data multitemporal dari citra Synthetic Aperture Radar (SAR). Tujuan utama dari penelitian ini adalah untuk melakukan kajian spasiotemporal perubahan lahan sawah di Kabupaten Indramayu berdasarkan lahan baku sawah tahunan yang diperoleh dari hasil pemanfaatan algoritma Deep Learning, yaitu Long Short-Term Memory (LSTM) untuk melakukan klasifikasi biner sawah dan non-sawah pada data SAR multitemporal dari satelit Sentinel-1. Akurasi hasil dari klasifikasi LSTM dievaluasi terhadap hasil observasi lapangan tahun 2021 sebagai tolok ukurnya, dengan metode klasifikasi tersupervisi lainnya, yaitu Support Vector Machine dan Random Forest, sebagai pembanding. Model LSTM yang didapatkan dalam penelitian ini selanjutnya dipakai untuk melakukan proses klasifikasi data lahan baku sawah tahunan. Hasil penelitian menunjukkan bahwa algoritma LSTM memberikan akurasi klasifikasi tertinggi dibandingkan algoritma SVM dan RF. Kajian spasiotemporal tutupan lahan sawah pada kurun waktu tahun 2017 hingga 2021 menunjukkan bahwa terjadi fluktuasi luasan dan sebaran lahan sawah tiap tahun, dengan tingkat perubahan terbesar pada Kecamatan Tukdana dan Kecamatan Kandanghaur. Berdasarkan kajian literatur sekunder, penambahan lahan sawah yang terkonsentrasi di Kecamatan Tukdana diperkirakan merupakan akibat dari penjarahan lahan perkebunan tebu oleh warga, sedangkan pengurangan lahan sawah yang terkonsentrasi di Kecamatan Kandanghaur diperkirakan merupakan akibat banjir rob yang berkepanjangan.

In order to manage the conversion of agricultural land, it is necessary to quantify the area and distribution of rice fields, where one of the efficient methods in mapping raw rice fields in the tropics is to carry out the process of classifying raw rice fields using multitemporal data from Synthetic Aperture Radar (SAR) images. The main objective of this research is to conduct a spatiotemporal study of changes in paddy fields in Indramayu Regency based on annual rice field map obtained from the use of the Deep Learning algorithm, namely Long Short-Term Memory (LSTM) to perform a binary classification of rice fields and non-rice fields on the data. Multitemporal SAR from the Sentinel-1 satellite. The accuracy of the results of the LSTM classification is evaluated against the results of field observations in 2021 as a benchmark, with other supervised classification methods, namely Support Vector Machine and Random Forest, for comparison. The LSTM model obtained in this study is then used to carry out the process of classifying the annual raw land data for rice fields. The results showed that the LSTM algorithm gave the highest classification accuracy compared to the SVM and RF algorithms. The spatiotemporal study of paddy field cover in the period 2017 to 2021 shows that there are fluctuations in the area and distribution of paddy fields every year, with the largest changes in Tukdana and Kandanghaur sub-districts. Based on a secondary literature review, the addition of rice fields concentrated in Tukdana District is estimated to be the result of looting of sugarcane plantations by residents, while the reduction of rice fields concentrated in Kandanghaur District is estimated to be the result of prolonged tidal flooding."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>