Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 184796 dokumen yang sesuai dengan query
cover
Nur Fitriani
"Kinerja mahasiswa adalah bagian penting dari suatu perguruan tinggi. Hal ini dikarenakan salah satu kriteria  perguruan tinggi yang berkualitas didasarkan pada  prestasi akademik yang baik. Tahun pertama perkuliahan adalah periode mahasiswa untuk meletakkan dasar atau fondasi yang selanjutnya akan mempengaruhi keberhasilan akademik karena tahun pertama memainkan peran penting dalam membentuk sikap dan kinerja siswa di tahun-tahun berikutnya. Pada Penelitian ini, pendekatan Semi-supevised Learning digunakan dalam mengklasifikasi kinerja mahasiswa tahun pertama di Departemen Matematika, Universitas Indonesia. Kinerja Mahasiswa dibagi menjadi dua kategori, yaitu sedang dan tinggi. Sampel pada penelitian ini adalah 140 mahasiswa tahun pertama dengan menggunakan 27 fitur. Ada dua proses yang digunakan, yaitu proses clustering dan klasifiksi. Pada proses clustering, mahasiswa dibagi menjadi tiga cluster/kelompok menggunakan K-Means Clustering. Sedangkan dalam proses klasifikasinya menggunakan Naïve Bayes Classifier. Kinerja algoritma yang diusulkan menghasilkan nilai akurasi 96.67% dan sensitifitas 94.44%.

Students performance is an essential part of a higher learning institution because one of the criteria for a high-quality university is based on its excellent record of academic achievements. The first- year of the lecture is the student period in laying the foundation that will affect academic success because first-year plays an important role in shaping the attitudes and performance of students in the following years. In this study, a semi-supervised learning approach is used to classify the performance of first-year students in the Department of Mathematics, Universitas Indonesia. Student performance will be divided into two categories, namely medium and high. The sample in this study consist of 140 first-year students with 27 features. There are two processes used i.e. clustering and the classification process. In the clustering process, the data is divided into three clusters using K-Means Clustering and the Naïve Bayes Classifier is chosen to classify it. The performance of the proposed algorithms is stated by accuracy and sensitivity value i.e. 96.67% and 94.44% respectively."
Lengkap +
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Aminah
"Makalah ini mcmbahas tentang pengelompokan data melalui metoda K-Muans Clustering. Hasil penjgelompokan metoda tersebut digunakan untuk memetakan data rataan nilai UMPTN IPA per kabupaien/kodya di seluruh Indonesia, dengan menggunakan Arc-View GIS versi 3.1. Dari hasil pemetaan tersebut diharapkan data yang merupakan rataan nilai UMPTN IPAtlersebut akan Iebih mudah dan menarik untuk dibaca. Terutama bagi pengambil kebijakan dalam dunia pendidikan. Dengan melihai hasil pemetaan tersebut diharapkan mereka bisa meningkatkan kualilas pendidikan atau melakukan perbaikan-perbaikan dalam dunia pcndidikan di Indonesia secara global, sesuai dengan kualitas pcndidikannya"
Depok: Universitas Indonesia, 2003
SAIN-8-2-2003-12
Artikel Jurnal  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Lengkap +
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nova Yuniarti
"[ABSTRAK
Berdasarkan data WHO tahun 2014, diperkirakan sekitar 15 juta orang di dunia
yang terinfeksi hepatitis B (HBsAg+) juga terinfeksi hepatitis D. Infeksi hepatitis
D dapat terjadi bersamaan (koinfeksi) atau setelah seseorang terkena hepatitis B
kronis (superinfeksi). Penyakit hepatitis B disebabkan oleh virus HBV dan
penyakit hepatitis D disebabkan oleh virus HDV. HDV tidak dapat hidup tanpa
HBV. Hepatitis D erat hubungannya dengan infeksi virus HBV, sehingga sangat
realistis bila setiap usaha pencegahan terhadap hepatitis B, maka secara tidak
langsung mencegah hepatitis D. Pada tesis ini akan dibahas bagaimana hasil
pengelompokan barisan DNA HBV menggunakan algoritma k-means clustering
dengan menggunakan perangkat lunak R. Dimulai dengan mengumpulkan barisan
DNA HBV yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri
menggunakan n-mers frequency, dan hasil ekstraksi ciri barisan DNA tersebut
dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan
normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data
masukan. Jumlah cluster yang dipilih dalam penelitian ini adalah dua dan
penentuan centroid awal dilakukan secara acak. Pada setiap iterasi dihitung jarak
masing-masing objek ke masing-masing centroid dengan menggunakan Euclidean
distance dan dipilih jarak terpendek untuk menentukan keanggotaan objek di
suatu cluster sampai akhirnya terbentuk dua cluster yang konvergen. Hasil yang
diperoleh adalah virus HBV yang berada pada cluster pertama lebih ganas
dibanding virus HBV yang berada pada cluster kedua, sehingga virus HBV pada
cluster pertama berpotensi berevolusi dengan virus HDV menjadi penyebab
penyakit hepatitis D.

ABSTRACT
Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D., Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D.]"
Lengkap +
2015
T44666
UI - Tesis Membership  Universitas Indonesia Library
cover
Khaola Rachma Adzima
"Penerapan algoritma partisi k-means dalam metode HOPACH clustering dalam penelitian ini dilakukan untuk mengelompokkan barisan DNA virus ebola. Proses dimulai dengan mengumpulkan barisan DNA virus ebola yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri menggunakan n-mers frequency. Hasil ekstraksi ciri barisan DNA tersebut dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data masukan. Hasil pengelompokan barisan DNA virus ebola pada penelitian ini diperoleh 8 kelompok dengan nilai MSS (Mean Split Silhouette) minimum 0,50266. Proses clustering pada penelitian ini menggunakan program open source R.

The implementation of k-means partitioning algorithm in HOPACH clustering method in this thesis is used to clustering DNA sequences of ebola viruses. The clustering process is started with collecting DNA sequences of ebola viruses that are taken from GenBank, then performing the extraction of DNA sequences using n-mers frequency. The extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will be used as an input data. As the results, we obtained 8 clusters with minimum MSS (Mean Split Silhouette) 0,50266. The clustering process in this thesis is using the open source program R."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44900
UI - Tesis Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Atika Previanti Nabila
"Segmentasi dalam dunia medis sudah menjadi suatu hal yang penting untuk menentukan diagnosa awal dari suatu penyakit, misalnya timbulnya tumor pada organ-organ tubuh yang berukuran kecil dan sulit teramati oleh mata telanjang. Namun, jika segmentasi dilakukan secara manual dan tradisional akan membutuhkan waktu yang banyak serta menyebabkan hasil yang tidak konsisten. Oleh karena itu, dibutuhkannya segmentasi secara otomatis yang dapat membantu dokter tidak hanya dalam mengetahui keberadaan tumor, melainkan juga dapat mengkuantifikasi ukuran tumor. Dalam penelitian ini, segmentasi otomatis dengan machine learning diterapkan menggunakan metode clustering K-Means pada fantom ekuivalen hati berbentuk silinder. Fantom ekuivalen terbuat dari material tepung beras dan lilin, yang kemudian diinjeksikan dengan radioaktivitas 18F-FDG sebesar 1,89 µCi/mL. Pengolahan citra fantom dilakukan dengan pesawat PET/CT Siemens Biograph menggunakan metode rekonstruksi Iterative 3D dan True-X serta 2 filter (Gaussian dan Butterworth). Akurasi deteksi algoritma K-Means menunjukkan bahwa dapat optimal pada tiga tipe pemindaian dengan terdeteksinya seluruh objek pada citra fantom. Namun, hal tersebut terkecualikan pada filter Gaussian dengan metode rekonstruksi Iterative 3D karena algoritma K-Means tidak dapat mendeteksi objek terkecil (4 mm) pada kedua wilayah fantom. Indikasi tidak terdeteksinya objek terkecil, dapat disebabkan oleh kinerja algoritma yang mengelompokkan objek dengan nilai piksel yang sama. Untuk hasil kuantifikasi diameter dengan algoritma K-Means (Dp) menunjukkan bahwa, hasil ukuran diameter lebih besar ±1-3 mm dibandingkan diameter fisis fantom (Dt) pada ketiga pemindaian. Namun, hal tersebut tidak berlaku pada pemindaian filter Gaussian dengan metode rekonstruksi Iterative 3D, yang memiliki kuantifikasi lebih kecil dibandingkan . Berdasarkan hasill kuantifikasi pada keempat pemindaian, ditunjukkan bahwa algoritma K-Means optimal pada filter Butterworth dengan metode rekonstruksi True-X dengan rata-rata RD untuk seluruh objek kurang dari 10%. Sehingga, untuk memvalidasi hal tersebut metode pengukuran K-Means dibandingkan dengan metode pengukuran FWHM dan FWTM dengan merata-ratakan kuantifikasi untuk setiap objek dari semua irisan. Tervalidasi bahwa algoritma K-Means memiliki performa yang optimal, dengan anilai RD yang dihasilkan hampir mendekati 0%.

Segmentation in medical, has become an important thing to determine the initial diagnosis of a desease, for example the emergence of tumors in organs that are small and difficult to observe manually. However, if the segmentation in medical is done manually and traditionally it will take a lot of time and cause inconsistant results. Therefore, automatic segmentation is needed which can help doctors not only by knowing the presence of tumors, but also in quantifying tumor size. In this study, automatic segmentation with machine learning was applied using the K-Means clustering algorithm method on the cylindrical liver equivalent phantom. The equivalent phantom was made from rice flour and wax, and the euqivalent phantom was injected with 18F-FDG with radioactivity 1,89 µCi/mL. The image processing was carried put using a PET/CT Siemens Biograph with Iterative 3D and True-X as reconstuction methods and 2 filters (Gaussian and Butterworth). The detection accuracy of the K-Means algorithm shows that it can be optimal in three types of scanning by detecting all objects in the phantom image. However, this is ecluded in the Gaussian filter with Iterative 3D reconstruction method, because the K-Means algorthm cannot detect the smallest object (4 mm) in both phantom regions. Indications for that phenomenon, could be caused by the performance of the algorithm that grouping the cluster with the same pixel value. For diameter quantifications of from K-Means algorithm shows that the diameter ±1-3 mm larger than the pyhsical fantom diameter (Dt). Based on the result of Dp quantification on the for type of scans, it it shown that the optimal K-Means algorithm on the Butterworth filter with the True-X reconstruction method with an average RD for all objects in phantom is less than 10%. So, to validate this result, the K-Means measurement method is compared with the FWHM and FWTM measurements methods by averaging the quantification for each object from all slices. It is validated that, the K-Means algorthm has optimal performance by reffering to the FWTM measurement where RD value is close to 0%."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirul Umam
"DNA adalah salah satu pembawa informasi genetik pada makhluk hidup. Sequencing dan clustering barisan DNA telah menjadi pekerjaan utama dan rutin dalam dunia biologi molekuler, khususnya dalam bidang terapan bioinformatika. Secara umum metode clustering dapat dibedakan menjadi dua, yaitu hirarki clustering dan partisi clustering. Penelitian ini menggabungkan dua metode clustering yaitu K-Means partisi clustering pada Level 1 dan DIANA hirarki clustering pada Level 2, oleh karena itu disebut Two-Level Hybrid Clustering. Proses awal dimulai dengan mengumpulkan barisan DNA HPV yang diperoleh dari NCBI National Centre for Biotechnology Information, Ekstraksi Ciri, dan Normalisasi. Kemudian melakukan proses clustering menggunakan algoritma K-Means pada Level 1 dan algoritma DIANA pada Level 2. Untuk menghitung jarak genetik antar barisan DNA HPV digunakan persamaan Euclidian Distance. Dan validitas klaster yang digunakan untuk menentukan banyaknya klaster yang optimum adalah Indeks Davies-Bouldin IDB. Hasil penerapan Two-Level Hybrid Clustering pada 1252 barisan DNA HPV adalah data dikelompokan menjadi 4 klaster dengan nilai IDB yaitu 0.859154564. Semua perhitungan dan proses clustering menggunakan software R.

DNA is one of the carrier of genetic information in living organisms. Sequencing and clustering DNA sequences has become the key and routine activitis in the molecular biology, in particular on bioinformatics applications. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combine two type clustering proccesses including K Means partitioning clustering on Level 1 and DIANA hierarchical clustering on Level 2, therefore it called Two Level Hybrid clustering. The beginning of process is started with collecting DNA sequences of HPV from NCBI National Centre for Biotechnology Information, Characteristics Extraction, and Normalization. The next step is clustering by implementation K Means algorithm on Level 1 and DIANA algorithm on Level 2. To calculate the genetic distance we use Euclidian Distance. Moreover, in validating cluster results in order to get optimum number of clusters, we use Davies Bouldin Index DBI. The result of implementation of Two Level Hybrid Clustering on 1252 sequences of HPV is the data clustered into 4 clusters with minimal IDB value is 0.859154564. All calculating and clustering process in this paper using software R.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47109
UI - Tesis Membership  Universitas Indonesia Library
cover
Azmi Jundan Taqiy
"Indonesia sebagai negara kepulauan memiliki lebih dari 17 ribu pulau. Hal ini menyebabkan adanya tantangan tersendri untuk mewujudkan konektivitas antar pulaunya, terutama pada daerah terpencil dan tertinggal. Pelayaran perintis merupakan pelayaran yang disubsidi oleh pemerintah Indonesia dengan tujuan utama meningkatkan perekonomian di daerah terpencil dan tertinggal. Namun saat ini, kinerja pelayaran perintis masih belum optimal untuk mencapai tujuan tersebut. Hal tersebut ditandai dengan lamanya round voyage suatu trayek yang dapat mencapai 14 hari serta rendahnya capaian target voyage pelayaran perintis. Oleh karena itu, perlu adanya evaluasi serta efisiensi rute pelayaran perintis. Salah satu yang dapat dilakukan untuk meningkatkan efisiensi rute pelayaran perintis adalah dengan melakukan re-routing trayek pelayaran perintis. Penelitian ini melakukan re-routing pelayaran perintis di wilayah NTT-Maluku Barat Daya dengan pertama melakukan clustering menggunakan DBSCAN (Density-Based Spatial Clustering of Applications with Noise) serta optimasi dengan pendekatan TSP (Travelling Salesman Problem). Hasil yang didapatkan adalah terdapat pengurangan dari rata-rata jarak tempuh trayek pelayaran perintis sebesar 55% (dari 1276 NM menjadi 569,3 NM) serta pengurangan angka rata-rata lama round voyage trayek sebesar 74% (dari 13,3 hari menjadi 3,5 hari). Selain itu, terjadi penurunan ketimpangan antar trayeknya yang dilihat dari nilai jangkauan (range) dari jumlah pelabuhan, jarak tempuh, serta lama round voyage pada trayek pelayaran perintis di wilayah NTT-Maluku Barat Daya.

Indonesia, as an archipelagic country, has more than 17,000 islands. This causes challenges in realizing inter-island connectivity, especially in remote and underdeveloped areas. Pelayaran Perintis is a shipping program that the Indonesian government subsidizes to improve the economy in remote and underdeveloped areas. However, the performance of Pelayaran Perintis is still not optimal for achieving this goal. This is indicated by the length of the round voyage of a route that can reach 14 days and the low achievement of the Pelayaran Perintis voyage target. Therefore, there is a need for evaluation and efficiency of Pelayaran Perintis routes. One thing that can be done to increase the efficiency of Pelayaran Perintis routes is by re-routing Pelayaran Perintis routes. This study re-routes Pelayaran Perintis in the NTT-Maluku Southwest region by first clustering using DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and optimization with the TSP (Travelling Salesman Problem) approach. The results obtained are a reduction in the average mileage for Pelayaran Perintis routes by 55% (from 1276 NM to 569.3 NM) and a reduction in the average length of round voyage routes by 74% (from 13.3 days to 3, 5 days). In addition, there has been a decrease in inequality between routes, which can be seen from the range value of the number of ports, distance traveled, and round voyage length on Pelayaran Perintis routes in the NTT-Southwest Maluku region.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabilla Ayu Fauziyyah
"ABSTRACT
Dewasa ini, sudah banyak rumah sakit modern yang dilengkapi dengan peralatan monitoring yang lengkap, yang menyebabkan makin banyaknya data medis yang tersimpan. Data medis ini memiliki karakteristik khusus, dan biasanya metode statistika biasa tidak dapat diterapkan begitu saja. Dari sinilah kemudian muncul gagasan mengenai Medical Data Mining (MDM) yang sudah terbukti cocok untuk diterapkan dalam analisis data medis. Naive Bayes Classifier (NBC) merupakan salah satu implementasi dari MDM. Kendati terbukti memiliki hasil yang akurat dan memuaskan dalam proses diagnosis medis, metode-metode dalam MDM belum sepenuhnya diterima dalam praktek medis untuk diterapkan. Alasan utama mengapa metode ini belum dapat diterima adalah karena terdapatnya resistansi dari tenaga medis terhadap metode diagnosis yang baru. Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi performa NBC  pada data rekam medis pasien kanker payudara di salah satu rumah sakit di Jakarta dalam masalah klasifikasi subtipe molekular kanker payudara, serta membandingkan hasil klasifikasi NBC dengan metode MDM lain, yaitu Decision Tree (DT). Hasil analisis menunjukkan bahwa NBC mengungguli DT dengan tingkat akurasi sebesar 92,8%. Selain itu, dapat juga ditunjukkan secara empiris bahwa NBC mampu menangani missing value dengan cukup baik dan tidak membutuhkan data dalam jumlah banyak untuk tetap dapat mengklasifikasikan sebagian besar pasien dengan benar.

ABSTRACT
Nowadays, modern hospitals are well equipped with data monitoring devices, which resulted in an abundant amount of medical data. These medical data possess specific characteristics and usually, statistical methods could not be applied directly. This is what started the notion of Medical Data Mining (MDM), which has proven to be effective in analysing medical data. Naive Bayes Classifier (NBC) is an implementation of MDM. Even though MDM methods produce a sufficiently accurate and satisfying results in diagnosis problems, these methods are still not well accepted in the medical practice. One of the main reasons is because there is a resistance of physicians to a new diagnosis method. The main goal of this study is to apply and evaluate the performance of NBC in classifying breast cancer patients in a private hospital in Indonesia into five classes of molecular subtypes and compare its performance with another popular MDM method, Decision Tree (DT). Results showed that NBC outperformed DT by reaching an accuracy rate of 92.8%. This study could also show empirically that NBC does not need a big dataset to be able to achieve a high accuracy rate and that NBC could handle the problem of missing values just fine."
Lengkap +
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>