Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2172 dokumen yang sesuai dengan query
cover
Fitria Rahmawati
"Data lifetime biasanya digunakan peneliti untuk mengetahui tingkat survival atau tingkat kegagalan suatu objek. Distribusi Weibull merupakan distribusi probabilitas yang sering digunakan untuk memodelkan data lifetime. Namun, distribusi Weibull hanya dapat memodelkan data lifetime dengan tingkat kegagalan atau hazard rate yang monoton. Sehingga dibutuhkan distribusi baru yang dapat memodelkan data lifetime dengan karakteristik tingkat kegagalan atau hazard rate yang beragam. Distribusi inverse Weibull adalah distribusi hasil transformasi inverse dari distribusi Weibull. Distribusi inverse Weibull merupakan distribusi yang dapat memodelkan data lifetime dengan hazard rate monoton (turun) maupun  non-monoton (upside-down bathtub shaped). Namun, untuk membuat kepadatan fleksibel dengan berbagai macam bentuk diperlukan generalisasi dari distribusi ini dengan menambahkan suatu parameter shape. Distribusi generalized inverse Weibull merupakan generalisasi dari distribusi inverse Weibull yaitu yang dibentuk dengan memangkatkan fungsi distribusi inverse Weibull dengan suatu parameter baru. Distribusi generalized inverse Weibull memiliki 2 parameter shape dan 1 parameter scale sehingga distribusi ini dapat menggambarkan shape dari fungsi hazard yang lebih beragam. Pada  skripsi ini, akan dibahas mengenai pembentukan distribusi inverse Weibull dan pembentukan distribusi generalized inverse Weibull, serta fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, dan karakteristik-karakteristik dari kedua distribusi tersebut. Penaksiran parameter dari distribusi generalized inverse Weibull menggunakan metode maksimum likelihood.

Lifetime data is usually used by researchers to determine the level of survival or failure rate of an object. Weibull distribution is a probability distribution that is often used to model the lifetime data. However, the Weibull distribution is only used to model the lifetime data with monotone failure rate or monotone hazard rate. So that, a new distribution is needed to model the lifetime data with varying characteristics of failure rates or hazard rates. Inverse Weibull distribution is a distribution that is formed from the inverse transformation of the Weibull distribution. Inverse Weibull distribution is a continued distribution which can model lifetime data with a monotone hazard rate (constant, increase, and decrease) or non-monotone hazard rate (upside-down bathtub shaped). However, to make a density flexible with wide variety of shapes the generalizations from this distribution are needed by adding a shape parameter. Generalized inverse Weibull distribution is derived from generalization of inverse Weibull distribution that is formed by raising the inverse Weibull distribution function with a new parameter. Generalized inverse Weibull distribution has two shape parameters and one scale parameter. So, this distribution can describe a more diverse shapes of hazard function. In this skripsi, we will discuss how to construct inverse Weibull distribution and Generalized inverse Weibull distribution, and probability distribution function, cumulative distribution function, survival function, hazard function, and characteristics of these distributions. Parameter estimation of the generalized inverse Weibull distribution is using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
"Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW.

This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremia Henry Pniel
"Fungsi hazard dapat dikategorikan menjadi dua, yaitu monoton (naik atau turun) dan non monoton (bathtub shape dan upside down bathtub shape). Untuk memodelkan data
dengan fungsi hazard monoton, naik atau turun, dan non monoton bathtub shape umumnya digunakan distribusi Gamma atau Weibull. Pada skripsi ini, akan diperkenalkan sebuah distribusi yang dapat memodelkan data dengan fungsi hazard berbentuk upside down bathtub shape. Distribusi ini diturunkan dari distribusi Lindley dengan melakukan transformasi yang disebut distribusi generalized inverse Lindley. Distribusi ini lebih fleksibel dalam memodelkan data dengan fungsi hazard non-monoton upside down bathtub. Hal ini dikarenakan parameter shape pada distribusi tersebut menyebabkan fungsi hazard memiliki banyak variasi bentuk namun tetap mempertahankan bentuk upside down bathtub. Beberapa karakteristik dari distribusi seperti fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard,dan momen ke-r akan dicari. Untuk mengestimasi parameter distribusinya akan digunakan metode maximum likelihood. Di akhir skripsi ini, akan dibangun data untuk mengestimasi parameter dari distribusi yang bersangkutan

Hazard rate are categorized by their shape, either its monotone (decreasing or increasing) or non-monotone (upside down bathtub shaped and bathtub shaped). Modelling data from monotone hazard rate, either decreasing or increasing, and bathtub shaped hazard rate are possible with common distribution such as Gamma distribution or Weibull distribution. For data which has upside down bathtub shaped hazard rate is usually done by using inverse transformation of exponential distribution such as inverse Gamma, inverse Weibull, and inverse Lindley. In this paper, a distribution that can model a data with upside down bathtub shaped hazard rate is introduced. The distribution is derived from Lindley distribution with transformation and is called generalized inverse Lindley distribution. The distribution is more flexible because shape parameter which make wide variety of shape without changing its hazard rate from upside down bathtub shaped. Some
statistic properties of the distribution such as density function, cumulative function, survival function, hazard function, and moment will be discussed. For estimating
parameter of the distribution, maximum likelihood method will be used. In the end, simulation data will be generated to see the estimation of the distributions parameter."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julio Majesty Rasjid
"Analisis mengenai data waktu tunggu memiliki peran penting dalam berbagai bidang disiplin ilmu. Pada umumnya data waktu tunggu memiliki pola penyebaran yang menceng. Distribusi Weibull merupakan salah satu distribusi yang sering digunakan untuk memodelkan data waktu tunggu. Namun, distribusi Weibull tidak sesuai digunakan untuk memodelkan data dengan fungsi hazard non-monoton, salah satunya bentuk upside-down bathtub. Menurut Sharma et al. (2015), invers dari beberapa distribusi probabilitas dapat memodelkan data dengan fungsi hazard berbentuk upside-down bathtub, salah satunya adalah distribusi invers Weibull. Pada penelitian ini, dibahas distribusi Alpha Power Invers Weibull (APIW) yang merupakan generalisasi dari distribusi invers Weibull. Distribusi ini dibentuk dengan menggunakan metode Alpha Power Transformation. Modifikasi dilakukan dengan penambahan parameter shape pada distribusi invers Weibull dengan tujuan untuk meningkatkan fleksibilitasnya. Beberapa karakteristik distribusi Alpha Power Invers Weibull yang dibahas meliputi fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard, dan momen ke-r. Fungsi kepadatan peluang dari distribusi APIW berbentuk menceng kiri dan unimodal. Lebih lanjut, fungsi hazard dari distribusi APIW berbentuk upside-down bathtub. Penaksiran parameter distribusi dilakukan dengan menggunakan metode maksimum likelihood. Terakhir, diberikan data waktu hingga pasien penderita kanker lambung meninggal yang dimodelkan dengan distribusi invers Weibull dan distribusi Alpha Power Invers Weibull sebagai ilustrasi. Hasil pemodelan menunjukkan bahwa distribusi Alpha Power Invers Weibull lebih baik dalam memodelkan data waktu hingga pasien penderita kanker lambung meninggal dibandingkan dengan distribusi invers Weibull.

Lifetime data analysis has an essential role in various fields of science. In general, lifetime data have a skewed distribution pattern. The Weibull distribution is one of the frequently used distributions for modelling lifetime data. However, the Weibull distribution is not suitable for modelling data with non-monotonous hazard functions, one of which is an upside-down bathtub shape. According to Sharma et al. (2015), the inverse version of several probability distributions can model the data with an upside-down bathtub shape, one of which is the inverse Weibull distribution. This study explained the Alpha Power Inverse Weibull (APIW) distribution as a generalized version of the inverse Weibull distribution. This distribution is constructed by using the Alpha Power Transformation method. The modification is done by adding a shape parameter to the inverse Weibull distribution to increase flexibility. The characteristics of Alpha Power Inverse Weibull distribution discussed include probability density function, distribution function, survival function, hazard function, and the r-th moment. The probability density function of APIW distribution is left-skewed and unimodal. In addition, the hazard function of APIW distribution has an upside-down bathtub shape. The distribution parameter estimation is done by using the maximum likelihood method. Finally, for illustration purposes, the data about the time until gastric cancer patients die are modelled with the inverse Weibull distribution, and the Alpha Power Inverse Weibull distribution is given. The modelling result shows that the Alpha Power Inverse Weibull distribution is better at modelling the time until gastric cancer patients die data than the inverse Weibull distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vina Dwi Maharani
"Pemodelan data survival bergantung pada bentuk dari fungsi hazard-nya. Fungsi hazard dapat berbentuk monoton (monoton naik dan monoton turun) dan non-monoton (bathtub dan upside-down bathtub atau unimodal). Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi extended inverse Lindley. Distribusi extended inverse Lindley merupakan distribusi yang dibangun dengan menggunakan transformasi terhadap distribusi Lindley dua paramater. Transformasi yang digunakan adalah transformasi power serta transformasi inverse agar distribusi yang dihasilkan mampu memodelkan data yang bersifat heavy tailed dan fungsi hazard-nya berbentuk upside-down bathtub. Pada penulisan ini, dibahas pembentukan distribusi extended inverse Lindley serta karakteristik dari distribusi tersebut yang meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, fungsi hazard, momen ke-r, skewness, kurtosis, modus dan median. Parameter dari distribusi extended inverse Lindley ditaksir menggunakan metode maximum likelihood. Pada akhir penelitian, dilakukan penerapan distribusi extended inverse Lindley terhadap data riil yaitu data survival lamanya waktu perbaikan untuk kerusakan penerima sinyal dan dibandingkan dengan distribusi lain yang mampu memodelkan data tersebut, dimana hasil dari perbandingan menunjukkan bahwa distribusi extended inverse Lindley mampu memodelkan data tersebut lebih baik dibanding dengan distribusi lain yang digunakan.

Modeling survival data depends on the shape of the hazard rate. Hazard rate may belong to the monotone (non-increasing and non-decreasing) and non-monotone (bathtub and upside-down bathtub). In this paper, a distribution called the extended inverse Lindley distribution will be introduced. Extended inverse Lindley distribution is a distribution that is formed from the transformation of the two parameter Lindley distribution. The transformations used are power transformation and inverse transformation. So that, the extended inverse Lindley distribution can model heavy tailed data with a upside-down bathtub hazard rate. In this essay, we will discuss how to construct extended inverse Lindley distribution and characteristics of these distributions. These include density function, probability distribusi function, survival function, hazard rate, r-th moment, skewness, kurtosis, mode dan median. Parameter estimation of the extended inverse Lindley distribution is using the maximum likelihood method. At the end of this paper, the application of the extended inverse Lindley distribution to real data in the form of survival data is the length of time to repair the damaged signal receiver and is compared with other distributions that are able to model the data, where the results of the comparison show that the application of the extended inverse Lindley distribution is better than the other distribution to model the data."
Depok: Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
"Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal.

Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Irawan
"Konsumsi energi akan meningkat bersamaan dengan meningkatnya aktivitas manusia. Hingga kini, sumber energi terbesar masih diperoleh dari bahan bakar fosil, namun berdasarkan LAPAN (Indonesia) diperkirakan pada abad 22 akan ada kelangkaan bahan bakar fosil. Dampak lingkungan pun menjadi alasan untuk mencari sumber energi alternatif seperti energi dari angin. Berdasarkan kebijakan energi nasional, Pemerintah Indonesia akan menambah kapasitas terpasang mesin pembangkit energi dari angin (PLTB) sebesar 0,79 GW pada tahun 2025. Dalam rangka mengoptimalkan mesin pembangkit energi, besar kecepatan angin harus ditentukan secara akurat, dan distribusi probabilitas adalah salah satu cara untuk menjelaskan bagaimana penyebaran besar kecepatan angin tersebut. Beberapa tahun yang lalu, ilmuan menggunakan distribusi Weibull untuk memodelkan penyebaran besar kecepatan angin, namun terjadi masalah pada daerah asal dari distribusi Weibull. Tidak adanya besar kecepatan angin sekitar 0 m/s menyebabkan banyak peneliti untuk memikirkan alternatif atau modifikasi dari distribusi weibull. Pada 2013, Ramadan telah memodifikasi distribusi weibull dengan menambahkan parameter shape dan menghasilkan distribusi weighted weibull. Pada skripsi ini akan dijelaskan bagaimana membangun distribusi weighted Weibull dan karakteristik-karakteristiknya. Untuk melengkapi skripsi ini, data kecepatan angin di Bali (Indonesia) akan dianalisis untuk menjelaskan bagaimana distribusi weighted weibull dan distribusi weibull menggambarkan karakteristik kecepatan angin di Bali.
Energy consumption will increase simultaneously with increasing human activity. The most common source of energy used is still derived from fossil fuels, and based on LAPAN(Indonesia) is estimated in the 22nd century there will be scarcity of fossil fuels. Environmental impact becomes a reason to seek alternative energy sources such as wind energy. The Ministry of Energy and Mineral Resources and the Agency for the Assessment and Application of Technology (BPPT, Indonesia) tries to take advantage of wind for electrical power and refers to the national energy policy, the Government of Indonesia will add installed capacity of the power generating machine (PLTB) station of 0.79 GW in 2025. In order to optimize machine used to generate energy, the characteristics of wind speed should be specified accurately, and the probability distribution is one way to describe the characteristics. Many years ago, the scientist used weibull distribution to modelling wind speed but there is problem with the support area of weibull distribution. There is no wind speed around 0 m/s led researchers to think of alternatives or modifications of weibull distribution. In 2013, Ramadan has modifed weibull distribution by adding a shape parameter to generate weighted weibull distribution. In this project will decribes how to construct weighted weibull distribution and characteristics of weighted Weibull distribution. To complete this project, wind speed data from Bali (Indonesia) will be analyzed to explain how weighted weibull distribution and weibull distribution describes about characteristics of the wind speed in Bali."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>