Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 162418 dokumen yang sesuai dengan query
cover
Muhammad Reza Ilham
"Guna mempersiapkan kebutuhan yang terencana dan tidak terencana di masa depan, perlu adanya investasi sejak dini. Dalam berinvestasi, seorang investor dihadapkan pada permasalahan dalam menentukan jumlah aset yang optimal dan proporsi modal pada masing-masing aset dalam menyusun portofolio investasinya. Masalah ini adalah masalah pengoptimalan portofolio. Dalam menyusun portofolio perlu dilakukan diversifikasi yaitu menggabungkan aset dengan karakteristik yang berbeda untuk mengurangi risiko investasi. Clustering dapat digunakan sebagai strategi diversifikasi. Tujuan dari penelitian ini adalah untuk mengetahui strategi diversifikasi aset dalam portofolio dengan metode clustering Density Based Spatial Clustering of Applications with Noise (DBSCAN) dan memilih aset serta menentukan proporsi modal yang optimal pada setiap portofolio aset penyusun portofolio dengan Multi- objektif algoritma metaheurysitic Co-variance. Berbasis Artificial Bee Colony (M-CABC). DBSCAN adalah algoritma clustering berbasis kepadatan cluster yang dirancang untuk membentuk cluster dan menemukan noise dalam data. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony (ABC) dengan menambahkan konsep statistic covariance untuk mempercepat konvergensi. Aset yang digunakan dalam penelitian ini adalah saham. Kami menggunakan lima data portfolio saham dengan persentase saham yang memiliki mean return negatif untuk setiap data yang berbeda. Implementasi dilakukan dalam tiga kasus metode yang berbeda: optimalisasi portofolio saham tanpa DBSCAN, optimalisasi portofolio saham dengan DBSCAN tanpa noise, dan optimalisasi portofolio saham dengan DBSCAN dengan noise. Hasilnya adalah besarnya persentase saham yang memiliki mean return pada data negatif berpengaruh terhadap pemilihan metode yang digunakan untuk memperoleh portofolio dengan risiko terkecil.

In order to prepare for planned and unplanned needs in the future, it is necessary to invest from an early age. In investing, an investor is faced with problems in determining the optimal amount of assets and the proportion of capital in each asset in compiling his investment portfolio. This issue is a portfolio optimization problem. In compiling a portfolio, it is necessary to diversify, namely combining assets with different characteristics to reduce investment risk. Clustering can be used as a diversification strategy. The purpose of this study is to determine the diversification strategy of assets in portfolios with the Density Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method and to select assets and determine the optimal proportion of capital in each portfolio compiler portfolio assets with the Multi-objective Co-variance metaheurysitic algorithm. . Based on Artificial Bee Colony (M-CABC). DBSCAN is a cluster density based clustering algorithm designed to form clusters and find noise in data. The M-CABC algorithm is a development of the Artificial Bee Colony (ABC) algorithm by adding the concept of statistical covariance to accelerate convergence. The assets used in this study are stocks. We use five stock portfolio data with the percentage of stocks that have a negative mean return for each of the different data. The implementation is carried out in three cases with different methods: optimization of stock portfolios without DBSCAN, optimizing stock portfolios with DBSCAN without noise, and optimizing stock portfolios with DBSCAN with noise. The result is the large percentage of stocks that have a mean return on negative data that affects the choice of the method used to obtain the portfolio with the smallest risk."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Yan
"Masalah optimisasi portofolio adalah masalah untuk mencari portofolio dengan return maksimal dan risiko minimal. Pada skripsi ini, digunakan model optimisasi portofolio multi objektif. Algoritma Multi-objective Co-variance based Artificial Bee Colony M-CABC digunakan untuk menyelesaikan masalah optimisasi portofolio. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony ABC menggunakan konsep kovariansi statistik dan dipakai untuk masalah optimisasi portofolio. Implementasi dilakukan dengan menggunakan lima sampel data OR-Lib; port1, port2, port3, port4, dan port5. Hasil yang didapat dibandingkan dengan unconstrained efficient frontier dari lima sampel data. Dari hasil simulasi, Algoritma M-CABC menghasilkan solusi yang cukup dekat dengan solusi pada unconstrained efficient frontier.

Portfolio optimization problem is a problem to find portfolio with maximum return and minimum risk. In this skripsi, multi objective portfolio optimization model is used. Multi objective Co variance based Artificial Bee Colony M CABC algorithm is used to solve porto folio optimization problem. M CABC algorithm is developed from Artificial Bee Colony ABC algorithm using statistical co variance concept and is used for portfolio optimization problem. Implementation is done using five OR Lib data samples port1, port2, port3, port4, dan port5. Obtained results is compared with unconstrained efficient frontier of five data samples. From simulation results, M CABC algorithm gives solutions that is near solutions on the unconstrained efficient frontier."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqi Satria Dinandra
"Pemilihan portofolio adalah salah satu bidang penelitian yang menarik dan penting di bidang keuangan karena masa depan dan ketidak beraturan pasar keuangan yang tidak dapat diprediksi. Setiap investor berharap mendapatkan tingkat pengembalian yang tinggi untuk portofolio mereka dengan risiko sekecil mungkin dan hal ini sulit dicapai, sehingga investor mencoba menyeimbangkan kinerja dan risiko portofolio melalui diversifikasi. Tujuan penelitian ini adalah untuk menyelidiki strategi pemilihan portofolio melalui metode clustering dan Genetic Algorithm. Clustering digunakan untuk diversifikasi portofolio dengan membentuk sekelompok aset homogen berdasarkan karakteristik rasio keuangan mereka. Ada tujuh rasio keuangan yang akan digunakan, yaitu EPS, PER, PEG, ROE, DER, Current Ratio, dan Profit Margin.
Dalam skripsi ini digunakan algoritma Density Based Clustering of Application with Noise sebagai metode clustering DBSCAN. Setelah fase clustering, Genetic Algorithm digunakan untuk membentuk portofolio optimum. Genetic Algorithm secara otomatis memilih portofolio dengan risiko dan pengembalian yang optimal berdasarkan hasil clustering dengan memutuskan aset dan bobot masing-masing yang akan dimasukkan dalam portofolio. Algoritma genetika didasarkan pada model Mean Variance Cardinality Constrained Portofolio Optimization MVCCPO dan disebut metode Genetic Algorithm dengan kendala. Metode ini berhasil memberikan tingkat pengembalian dan Sharpe ratio yang lebih tinggi 25,35 dan 17,20 dibandingkan dengan indeks S P 500 pada periode waktu yang sama dengan tingkat pengembalian dan Sharpe ratio masing-masing 12,34 dan 2,7.

Portfolio selection is one of the interesting and important fields of research in finance because of the unpredictable future and randomness of the financial market. Every investor is hoping to get a high rate of return for their portfolio with as little risk as possible, which is hard to achieve, so investors try to balance the performance and risk of the portfolio through diversification. The motivation of this research is to investigate the portfolio selection strategies through clustering method and application of genetic algorithm. Clustering is used to diversify the portfolio by forming a homogenous cluster of assets with respect to their financial ratios characteristic. There are seven financial ratio characteristics that is used, they are EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin.
In this thesis, Density Based Clustering Algorithm with Application of Noise used as the clustering method DBSCAN. After the clustering phase, genetic algorithm used for portfolio selection. Genetic Algorithm automatically select the optimum risk and return portfolio based on the clustered asset by deciding which assets and their respective weights included in the portfolio. The genetic algorithm is based on the Mean Variance Cardinality Constrained Portofolio Optimization MVCCPO model and called a Constrained Genetic Algorithm. The method succesfully give a higher level of return 25,35 and Sharpe ratio 17,20 compared to S P 500 index in the same period of time 12.34 and 2.7 respectively.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thasya Dwiayu Maydina
"Optimisasi portofolio adalah masalah fundamental pada lingkungan keuangan, dimana investor membentuk portofolio yang sesuai dengan yang diharapkan dengan mendapatkan return optimal dan risiko minimal. Pada skripsi ini, membahas masalah optimisasi portofolio dengan kendala di bidang keuangan seperti biaya transaksi, kardinalitas, dan kuantitas dibawah asumsi bahwa return dari aset berisiko adalah bilangan fuzzy. Karena hal tersebut, digunakan model optimisasi portofolio yaitu, mixed integer model nonlinear programming problem. Pertama, data saham di diversifikasi berdasarkan 7 skor rasio finansial EPS, PER, PEG, ROE, DER, Current Ratio dan Profit Margin dengan Agglomerative Clustering untuk menghasikan klaster yang homogen berdasarkan risiko. Selanjutnya, setiap klaster dicari proporsi dalam portofolio dengan menggunakan algoritme heuristik yaitu modified artificial bee colony MABC algorithm, dimana pada algoritme tersebut terdapat proses inisialisasi populasi yang dibangun berdasarkan pendekatan chaotic initialization. Pada akhirnya, return yang dihasilkan dibandingkan dengan S P 500 index return 12,34 dan Sharpe ratio 2,7 . Hasil dari performa Agglomerative Clustering Modified Artificial Bee Colony Algoritm yang dievaluasi menggunakan data aktual, menghasilkan nilai tertinggi dari rata-rata return sebesar 29,96 dan Sharpe ratio sebesar 17,562.

Portfolio optimization problem is a fundamental matter in the financial environment, where the investors form a satisfactory portfolio by obtaining optimal return and minimal risk. In this undergraduate thesis, we discuss the portfolio optimization problem with real world constraints such as transaction costs, cardinality, and quantity under the assumption that the returns of risky assets are fuzzy numbers. Thus, a mixed integer model nonlinear programming problem is discussed. At first, stock data is diversified based on their financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin by using agglomerative clustering to produce a homogeneous cluster. Next, weight of each stock in the stock portfolio are determined using a modified artificial bee colony MABC algorithm, where in the algorithm there is a process of chaotic initialization approach. Finally, the obtained return will be compared to both the S P 500 index return 12,34 and Sharpe ratio 2,7. The results form the performance of Modified Artificial Bee Colony Algoritm with Agglomerative Clustering in portfolio optimization, evaluated based on some actual dataset show that the higher level of return is 29,96 and Sharpe ratio is 17,562."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abyan Pras Sahala
"Dalam berinvestasi, investor menginginkan portofolio optimal yang menghasilkan return tinggi dengan risiko yang rendah. Terdapat berbagai model optimisasi portofolio, salah satunya adalah model Mean-Variance (MV). Metode ini meminimalkan variansi portofolio yang merepresentasikan risiko dari sebuah investasi. Dalam menyelesaikan permasalahan optimisasi portofolio dapat digunakan metode heuristik, salah satunya adalah Artificial Bee Colony. Metode ini terinspirasi dari pergerakan koloni lebah madu dalam mencari makanan. Pada skripsi ini dibahas model optimisasi portofolio Cardinality-constrained Mean-variance(CCMV) yang memodifikasi model MV dengan menambahkan kendala kardinalitas, kendala kuantitas, serta parameter tingkat toleransi risiko investor. Untuk menyelesaikan masalah optimisasi portofolio menggunakan model CCMV, digunakan metode heuristik Improved Quick Artificial Bee Colony (iqABC) yang merupakan perkembangan metode ABC. Penggunaan metode iqABC dengan model CCMV menghasilkan portofolio dengan rata-rata return dan nilai sharpe ratio yang lebih baik dibandingkan dengan pasar.

In Investing, investor wants an optimal portfolio that generates high return with low risk. There are many portfolio optimization models, one of them is Mean-Variance (MV) model. This model minimizes the portfolio variances that represents the risk in investment. The Artificial Bee Colony (ABC) is an heuristic method to solve the portfolio optimization problems. This method inspired by the movement of honey bee colony when searching for foods. In this study, the Cardinality-constrained Mean-Variance (CCMV) model & Improved Quick Artificial Bee Colony (iqABC) method are used. In this case, the CCMV model is the modification of the MV model by adding the cardinality constraint, quantity constraints, and the investor risk tolerance parameter. Meanwhile, the iqABC method is the development of the ABC method. The used of iqABC method on CCMV model generates a portfolio that gives better returns and sharpe ratio compared to the market."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fastabiq Rahmat Imanu
"Density-Based Spatial Clustering of Application with Noise (DBSCAN) merupakan salah satu metode klastering berdasarkan kepadatan data yang menggunakan parameter radius jarak dari titik data tersebut dan jumlah minimal titik data untuk menghasilkan sebuah klaster. Traveling Salesman Problem (TSP) merupakan aplikasi dari optimasi yang menentukan sebuah rute yang diawali dan diakhiri di titik yang sama dengan hasil jarak paling minimum. Permasalahan konektivitas pelayaran perintis merupakan bagian yang sangat penting untuk menjaga agar daerah 3T (Terdepan, Terpencil, dan Tertinggal) terkoneksi. Wilayah Papua Barat memiliki moda transportasi yang terbatas dan Indeks Desa Membangun (IDM) yang paling rendah yaitu 0.5045 yang mengakibatkan tingginya angka desa 3T pada wilayah tersebut, untuk meningkatkan angka IDM di wilayah tersebut dibutuhkan moda transportasi yang dapat diakses secara rutin untuk merangsang perekonomian dan mobilitas penduduk. Penelitian ini bertujuan untuk mendapatkan rute pelayaran baru dengan meminimalkan jarak dan waktu tempuh. Dengan menggunakan DBSCAN dan TSP diperoleh 7 rute baru untuk 7 unit kapal perintis, dengan total jarak yaitu 3393 Nautical Miles dan rata-rata waktu pelayaran yaitu 3 hari, frekuensi kunjungan dapat dilakukan 4 kali dalam 12 hari pelayaran.

The Density-Based Spatial Clustering of Application with Noise (DBSCAN) is a clustering method based on data density that uses the radius parameter of the distance from the data point and the minimum number of data points to create a cluster. Traveling Salesman Problem (TSP) is an optimization application that determines a route that starts and ends at the same point with the minimum distance. The problem of pioneer ship connectivity is a very important for part of connecting the Isolated Places in Indonesia. The West Papua region is one of the regions in Indonesia that has limited transportation modes and the lowest Village Development Evaluation is 0.5045, Affecting the high number of underdeveloped villages in that region. Therefore, to increase the Village Development Evaluation number in West Papua, hence the underdeveloped villages can be accessed regularly to stimulate the economy and mobility. This research aims to obtain a new shipping route by minimizing the distance and travel time. By using DBSCAN and TSP, 7 new routes were obtained for 7 pioneer ships, with a total distance is 3393 Nautical Miles and an average voyage time are 3 days, the frequency of visits can be done 4 times in a 12-day cruise.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azmi Jundan Taqiy
"Indonesia sebagai negara kepulauan memiliki lebih dari 17 ribu pulau. Hal ini menyebabkan adanya tantangan tersendri untuk mewujudkan konektivitas antar pulaunya, terutama pada daerah terpencil dan tertinggal. Pelayaran perintis merupakan pelayaran yang disubsidi oleh pemerintah Indonesia dengan tujuan utama meningkatkan perekonomian di daerah terpencil dan tertinggal. Namun saat ini, kinerja pelayaran perintis masih belum optimal untuk mencapai tujuan tersebut. Hal tersebut ditandai dengan lamanya round voyage suatu trayek yang dapat mencapai 14 hari serta rendahnya capaian target voyage pelayaran perintis. Oleh karena itu, perlu adanya evaluasi serta efisiensi rute pelayaran perintis. Salah satu yang dapat dilakukan untuk meningkatkan efisiensi rute pelayaran perintis adalah dengan melakukan re-routing trayek pelayaran perintis. Penelitian ini melakukan re-routing pelayaran perintis di wilayah NTT-Maluku Barat Daya dengan pertama melakukan clustering menggunakan DBSCAN (Density-Based Spatial Clustering of Applications with Noise) serta optimasi dengan pendekatan TSP (Travelling Salesman Problem). Hasil yang didapatkan adalah terdapat pengurangan dari rata-rata jarak tempuh trayek pelayaran perintis sebesar 55% (dari 1276 NM menjadi 569,3 NM) serta pengurangan angka rata-rata lama round voyage trayek sebesar 74% (dari 13,3 hari menjadi 3,5 hari). Selain itu, terjadi penurunan ketimpangan antar trayeknya yang dilihat dari nilai jangkauan (range) dari jumlah pelabuhan, jarak tempuh, serta lama round voyage pada trayek pelayaran perintis di wilayah NTT-Maluku Barat Daya.

Indonesia, as an archipelagic country, has more than 17,000 islands. This causes challenges in realizing inter-island connectivity, especially in remote and underdeveloped areas. Pelayaran Perintis is a shipping program that the Indonesian government subsidizes to improve the economy in remote and underdeveloped areas. However, the performance of Pelayaran Perintis is still not optimal for achieving this goal. This is indicated by the length of the round voyage of a route that can reach 14 days and the low achievement of the Pelayaran Perintis voyage target. Therefore, there is a need for evaluation and efficiency of Pelayaran Perintis routes. One thing that can be done to increase the efficiency of Pelayaran Perintis routes is by re-routing Pelayaran Perintis routes. This study re-routes Pelayaran Perintis in the NTT-Maluku Southwest region by first clustering using DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and optimization with the TSP (Travelling Salesman Problem) approach. The results obtained are a reduction in the average mileage for Pelayaran Perintis routes by 55% (from 1276 NM to 569.3 NM) and a reduction in the average length of round voyage routes by 74% (from 13.3 days to 3, 5 days). In addition, there has been a decrease in inequality between routes, which can be seen from the range value of the number of ports, distance traveled, and round voyage length on Pelayaran Perintis routes in the NTT-Southwest Maluku region.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annan Mikail Ramadhan Atmawidjaja
"Indonesia adalah negara kepulauan terbesar di dunia yang membentuk satu negara, dengan lima pulau utama dan 30 kepulauan yang lebih kecil dengan total lebih dari 18.110 pulau dan pulau kecil, di mana sekitar 6.000 di antaranya berpenghuni. Oleh karena itu, Pelayaran melalui jalur laut merupakan moda transportasi utama antar pulau di Indonesia. Namun, hal ini menjadi tantangan tersendiri dalam mewujudkan konektivitas antar pulau, terutama di daerah terpencil dan tertinggal. Pelayaran Perintis adalah layanan pelayaran publik yang didanai oleh pemerintah dengan tujuan utama untuk mendukung perekonomian di daerah terpencil dan tertinggal. Namun pada saat tulisan ini dibuat, kinerja pelayaran perintis dinilai masih belum memadai atau belum efisien untuk mencapai tujuan tersebut. Hal ini ditandai dengan lamanya round voyage pelayaran rute tersebut, yang dapat mencapai hingga 14 hari, dan rendahnya frekuensi pelayaran pelayaran perintis dapat menghambat pembangunan ekonomi. Akibatnya, efisiensi rute pelayaran perintis harus dievaluasi kembali. Re-routing dan mengoptimasi rute pelayaran perintis merupakan salah satu cara untuk meningkatkan efisiensi rute pelayaran perintis. Penelitian ini direalisasikan dengan melakukan rerouting pelayaran perintis di wilayah Kepulauan Riau dengan terlebih dahulu melakukan clustering pelabuhan-pelabuhan menggunakan metode clustering DBSCAN (Density Based Spatial Clustering of Applications with Noise) dan optimalisasi dengan pendekatan metode penyelesaian TSP (Travelling Salesman Problem). Hasil yang diperoleh adalah terjadi penurunan rata-rata jarak tempuh pelayaran perintis sebesar 39,5% (dari 1.156,1 NM menjadi 699,5 NM) dan penurunan rata-rata lama durasi round voyage sebesar 66,9% (dari 12 hari menjadi 3,97 hari). Selain itu, terjadi penurunan ketimpangan antar rute yang terlihat dari nilai rentang jumlah pelabuhan, jarak tempuh, dan durasi round voyage pelayaran pada rute pelayaran perintis di Kepulauan Riau.

Indonesia is the world's biggest archipelago to constitute a single state, with five main islands and 30 smaller archipelagoes totaling over 18,110 islands and islets, of which approximately 6,000 are inhabited. Hence, Shipping through sea is the main mode of inter-island transport in Indonesia. However, this creates its own challenge in realizing inter-island connectivity, especially in remote and underdeveloped areas. Perintis shipping is a government-funded publicly available shipping service with a primary objective of supporting the economy in remote and underdeveloped areas. However, as of this writing, the performance of perintis shipping is still inadequate or inefficient to achieve this goal. This is characterized by the lengthy round voyage duration of the routes, which can reach up to 14 days, and the low frequency of perintis shipping voyages could hinder economic development. As a result, the efficiency of perintis shipping routes must be assessed. Re-routing the perintis shipping routes is one way to increase the efficiency of the perintis shipping routes. This research reroutes perintis shipping in the Riau Archipelago region by first clustering the ports using the DBSCAN (Density Based Spatial Clustering of Applications with Noise) clustering method and optimizing with the TSP (Travelling Salesman Problem) solving method approach. The results obtained were that there was a reduction in the average mileage of pioneer shipping routes by 39.5% (from 1,156.1 NM to 699.5 NM) and a reduction in the average length of round voyage routes by 66.9% (from 12 days to 3.97 days). In addition, there was a decrease in inequality between routes as seen from the value of the range of the number of ports, distance traveled, and round voyage duration on pioneer shipping routes in the Riau Archipelago."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ariqulhakim
"Banyaknya pulau di Indonesia menyebabkan adanya tantangan untuk menjaga konektivitas antar pulaunya, mendorong untuk dibutuhkannya moda transportasi agar meningkatkan konektivitas antar pulau khususnya di wilayah 3T. Di masa ini pelayaran perintis menjadi moda transportasi yang ditugaskan oleh pemerintah guna melayani daerah 3T. Namun, pada penerapannya pelayaran perintis masih dinilai kurang optimal sehingga perlu dilakukannya optimasi. Optimasi merupakan aktifitas yang bertujuan untuk mendapatkan nilai maksimal atau minimal berdasarkan fungsi dan tujuan yang ingin dicapai, dengan tetap memenuhi fungsi kendala yang berlaku. Optimasi dinilai penting untuk keberlanjutan akses transportasi laut khususnya pelayaran perintis di Sulawesi Selatan-Nusa Tenggara. Seluruh Pelabuhan yang dilayani trayek pelayaran perintis diklasterkan menggunakan metode Density Based Spatial Clustering of Applications with Noise (DBSCAN). Penelitian ini ditujukan untuk memberikan rekomendasi untuk optimasi rute pelayaran perintis. Terdapat 3 klaster yang terbentuk untuk menyesuaikan ketersediaan kapal perintis yang berjumlah 3 kapal. Masing-masing klaster dilakukan optimasi menggunakan Travelling Salesman Problem (TSP). Hasil optimasi didapatkan lebih optimal dengan total jarak tempuh rata-rata di ketiga klaster yang terbentuk sebesar 630 NM dibandingkan dengan rute eksisting sebesar 1211 NM dengan penurunan sebesar 48%

The large number of islands in Indonesia poses a challenge to maintain connectivity between islands, encouraging the need for modes of transportation to increase inter-island connectivity, especially in the 3T region. At this time perintis shipping became a mode of transportation assigned by the government to serve the 3T areas. However, in its implementation, perintis shipping is still considered less than optimal, so optimization is needed. Optimization is an activity that aims to get the maximum or minimum value based on the function and goals to be achieved, while still meeting the applicable constraints. Optimization is considered important for the sustainability of access to sea transportation, especially perintis shipping in South Sulawesi-Nusa Tenggara. All ports served by perintis shipping routes are clustered using the Density Based Spatial Clustering of Applications with Noise (DBSCAN) method. This research is intended to provide recommendations for optimizing perintis shipping routes. There are 3 clusters formed to adjust the availability of perintis ships, which total 3 ships. Each cluster is optimized using the Traveling Salesman Problem (TSP). Optimization results obtained are more optimal with the total average mileage in the three clusters formed of 630 NM compared to the existing route of 1211 NM with a decrease of 48%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tya Nadira
"ABSTRAK
Kanker merupakan penyebab utama kematian kedua di seluruh dunia sehingga mengakibatkan kanker menjadi salah satu prioritas masalah dalam kesehatan. Di Indonesia, tercatat bahwa kanker payudara dan kanker paru-paru memiliki angka kejadian dan kematian tertinggi bagi wanita dan pria WHO, 2014 . Untuk menangani hal tersebut, dalam tugas akhir ini diusulkan suatu metode untuk mengklasifikasikan data kanker menggunakan Support Vector Machines SVM dengan pemilihan fitur berdasarkan Artificial Bee Colony ABC dan Global Artificial Bee Colony GABC pada data kanker payudara dan paru-paru berbasis microarray. Hasil yang diperoleh menunjukkan bahwa metode pemilihan fitur ABC dan GABC memberikan hasil rata-rata akurasi yang lebih tinggi dibandingkan tanpa dilakukan pemilihan fitur dalam klasifikasi data kanker. Untuk pemilihan fitur, metode GABC memberikan hasil yang lebih unggul yaitu dengan akurasi tertinggi 99,99 dengan 10 fitur untuk data kanker paru-paru dan 96,4286 dengan 10 fitur untuk data kanker payudara selama 3 kali running sedangkan metode ABC memberikan rata-rata akurasi tertinggi 99,99 dengan 20 fitur untuk data kanker paru-paru dan 96,4286 dengan 10 fitur untuk data kanker payudara selama 5 kali running.

ABSTRACT
Cancer is the second leading cause of death globally, so that cancer becomes one of priority problems in health. According to WHO on 2014, Indonesia has breast cancer and lung cancer that is the highest incidence and death rates for women and men. To overcome it, in this research, we proposed method to classify cancer data using Support Vector Machines SVM with features selection based on Artificial Bee Colony ABC and Global Artificial Bee Colony GABC on breast and lung cancer based on microarray data. The results show that ABC and GABC as features selection method produced higher average classification accuracy than without no features selection. For features selection methods, the GABC method provides higher results with the highest 99,99 with 10 features for lung cancer data and 96,4286 with 10 features for breast cancer data for 3 times of runs while ABC method provides 99,99 with 20 features for data lung cancer and 96,4286 with 10 features for breast cancer data for 5 times of runs."
2017
S69844
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>