Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 172405 dokumen yang sesuai dengan query
cover
Nofentari Putri
"Pada penelitian ini, sintesis nanopartikel ZnO, nanopartikel SmFeO3 dan nanokomposit ZnO/SmFeO3 berhasil dilakukan dengan ekstrak daun kembang merak (Caesalpinia pulcherrima (L.) Sw.) yang berperan sebagai sumber basa lemah dan capping agent. Hasil sintesis dikarakterisasi menggunakan instrumen spektrofotometer UV –Vis, UV–Vis DRS, spektroskopi FTIR, XRD, PSA, SEM EDX dan TEM. Hasil karakterisasi spektroskopi UV–Vis menunjukkan adanya puncak serapan UV–Vis nanopartikel ZnO pada panjang gelombang 370 nm. Hasil karakterisasi UV–Vis DRS menunjukkan nilai band gap nanopartikel ZnO, nanopartikel SmFeO3 dan nanokomposit ZnO/SmFeO3 berturut–turut sebesar 3,2 Ev ; 1,95 eV dan 2,90 eV. Hasil karakterisasi XRD membuktikan bahwa nanopartikel ZnO memiliki struktur heksagonal wurtzite, nanopartikel SmFeO3 memiliki struktur orthorombic. Hasil karakterisasi PSA menunjukkan bahwa distribusi rata–rata ukuran partikel ZnO pada 66,71 nm. Berdasarkan hasil karakterisasi TEM ukuran rata–rata partikel SmFeO3 73,27 nm.
Nanopartikel ZnO, nanopartikel SmFeO3 dan naokomposit ZnO/SmFeO3 diuji aktivitas fotokatalitiknya untuk mendegradasi senyawa zat warna malasit hijau dibawah sinar tampak. Persentase degradasi malasit menggunakan nanopartikel ZnO, nanopartikel SmFeO3 dan nanokomposit ZnO/SmFeO3 beturut – turut sebesar 91,77% ; 85,41% dan 94,42% selama 2 jam waktu penyinaran. Perhitungan kinetika reaksi fotodegradasi malasit hijau menggunakan bahwa nanokomposit ZnO/SmFeO3 mengikuti reaksi orde satu semu.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
cover
Agnes Yolanda
"Pada penelitian ini, sintesis nanopartikel ZnO, Co2SnO4, dan nanokomposit ZnO/Co2SnO4 dilakukan secara green synthesis menggunakan ekstrak daun talas (Colocasia esculenta L. Schott) dalam sistem dua fasa (n-heksana – air). Kandungan metabolit sekunder yang terdapat pada ekstrak daun talas seperti alkaloid dan saponin akan berperan sebagai sumber basa lemah dan capping agent dalam proses sintesis. Selanjutnya, hasil sintesis akan dikarakterisasi dengan menggunakan Spektrofotometer UV-Vis, Spektrofotometer UV-Vis DRS, Spektroskopi FTIR, X-Ray Diffraction (XRD), dan Transmission Electron Microscopy (TEM). Berdasarkan hasil karakterisasi dengan spektrofotometer UV-Vis DRS didapatkan nilai band gap energy untuk nanopartikel ZnO, Co2SnO4, dan nanokomposit ZnO/Co2SnO4 masing-masing sebesar 3,08 eV, 1,6 eV, dan 2,44 eV. Nanokomposit ZnO/Co2SnO4 diuji aktivitas fotokatalitiknya terhadap malasit hijau. Berdasarkan hasil penelitian, uji aktivitas fotokatalitik nanokomposit ZnO/Co2SnO4 memiliki persen degradasi tertinggi pada kondisi optimum dengan berat sebesar 12 mg pada 5,0 x 10-6 M malasit hijau selama 120 menit di bawah sinar tampak, yaitu sebesar 92,63%.

In this research, synthesis of ZnO, Co2SnO4 nanoparticles, and ZnO/Co2SnO4 nanocomposites were prepared by green synthesis using taro (Colocasia esculenta L.Schott) leaf extract in a two phase system (n-hexane – water). The content of secondary metabolites found in taro leaf extract such as alkaloid and saponin were roled as a source of weak base and capping agent in the synthesis process. Furthermore, the synthesis results were characterized by UV-Vis spectrophotometer, UV-Vis DRS spectrophotometer, FTIR spectroscopy, X-Ray Diffraction, and Transmission Electron Microscopy. UV-Vis DRS spectrophotometer characterization shows that band gap energy of ZnO, Co2SnO4 nanoparticles, and ZnO/Co2SnO4 nanocomposites were 3,08 eV, 1,6 eV, and 2,44 eV, respectively. ZnO/Co2SnO4 nanocomposites was applied for its photocatalytic activity to malachite green. Based on research results, the photocatalytic activity test of ZnO/Co2SnO4 nanocomposites had the highest degradation percentage of malachite green reached in the optimum condition of 12 mg mass catalyst and 5,0 x 10-6 M of malachite green concentration for 120 minutes under visible light, which was 92,63%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agnes Yolanda Riwang
"Pada penelitian ini, sintesis nanopartikel ZnO, Co2SnO4, dan nanokomposit ZnO/Co2SnO4 dilakukan secara green synthesis menggunakan ekstrak daun talas (Colocasia esculenta L. Schott) dalam sistem dua fasa (n-heksana – air). Kandungan metabolit sekunder yang terdapat pada ekstrak daun talas seperti alkaloid dan saponin akan berperan sebagai sumber basa lemah dan capping agent dalam proses sintesis. Selanjutnya, hasil sintesis akan dikarakterisasi dengan menggunakan Spektrofotometer UV-Vis, Spektrofotometer UV-Vis DRS, Spektroskopi FTIR, X-Ray Diffraction (XRD), dan Transmission Electron Microscopy (TEM). Berdasarkan hasil karakterisasi dengan spektrofotometer UV-Vis DRS didapatkan nilai band gap energy untuk nanopartikel ZnO, Co2SnO4, dan nanokomposit ZnO/Co2SnO4 masing-masing sebesar 3,08 eV, 1,6 eV, dan 2,44 eV. Nanokomposit ZnO/Co2SnO4 diuji aktivitas fotokatalitiknya terhadap malasit hijau. Berdasarkan hasil penelitian, uji aktivitas fotokatalitik nanokomposit ZnO/Co2SnO4 memiliki persen degradasi tertinggi pada kondisi optimum dengan berat sebesar 12 mg pada 5,0 x 10-6 M malasit hijau selama 120 menit di bawah sinar tampak, yaitu sebesar 92,63%.

In this research, synthesis of ZnO, Co2SnO4 nanoparticles, and ZnO/Co2SnO4 nanocomposites were prepared by green synthesis using taro (Colocasia esculenta L.Schott) leaf extract in a two phase system (n-hexane – water). The content of secondary metabolites found in taro leaf extract such as alkaloid and saponin were roled as a source of weak base and capping agent in the synthesis process. Furthermore, the synthesis results were characterized by UV-Vis spectrophotometer, UV-Vis DRS spectrophotometer, FTIR spectroscopy, X-Ray Diffraction, and Transmission Electron Microscopy. UV-Vis DRS spectrophotometer characterization shows that band gap energy of ZnO, Co2SnO4 nanoparticles, and ZnO/Co2SnO4 nanocomposites were 3,08 eV, 1,6 eV, and 2,44 eV, respectively. ZnO/Co2SnO4 nanocomposites was applied for its photocatalytic activity to malachite green. Based on research results, the photocatalytic activity test of ZnO/Co2SnO4 nanocomposites had the highest degradation percentage of malachite green reached in the optimum condition of 12 mg mass catalyst and 5,0 x 10-6 M of malachite green concentration for 120 minutes under visible light, which was 92,63%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arnetta Revieri
"Gas rumah kaca, yang didominasi oleh gas CO2 dan CH4, telah menjadi fokus intensif dalam upaya global untuk mengatasi perubahan iklim yang cepat. Solusi seperti penggunaan sumber energi terbarukan, pengelolaan limbah yang efisien, dan pengembangan teknologi ramah lingkungan, termasuk metode seperti dry reforming of methane (DRM), menjadi fokus utama dalam upaya global untuk mengurangi emisi CO2 dan CH4. Cadangan gas alam Natuna, yang mengandung 70% CO2 dan 30% CH4, memberikan peluang yang menjanjikan untuk memproduksi gas sintetis (syngas) melalui proses DRM. DRM adalah proses katalitik yang mengubah CH4 dan CO2 menjadi campuran gas sintesis hidrogen (H2) dan karbon monoksida (CO). Proses DRM bersifat katalitik dan memerlukan penggunaan katalis untuk memfasilitasi reaksi. Katalis yang digunakan biasanya adalah katalis berbasis nikel karena katalis ini telah terbukti memiliki kinerja yang tinggi pada proses DRM. Dalam penelitian ini, penentuan parameter kinetika pada reaktor unggun diam ditetapkan sebagai landasan untuk mengembangkan kondisi operasi proses DRM. Pemodelan pada penelitian ini mengikuti mekanisme Langmuir-Hinshelwood dengan reaksi permukaan sebagai Tahap Penentu Laju (TPL). Hasil penelitian menunjukkan bahwa data simulasi dengan literatur memiliki nilai error di bawah 5% yang menunjukkan bahwa parameter kinetika yang digunakan dalam simulasi valid untuk pemodelan reaktor. Pemodelan kemudian dilakukan dengan menggunakan model ideal 1D homogen semu. Berdasarkan hasil simulasi, komposisi umpan CO2:CH4 = 70:30 akan menghasilkan konversi CH4 yang lebih tinggi dibandingkan dengan komposisi CO2:CH4 = 50:50. Namun, di saat yang sama, konversi CO2 dan rasio H2/CO yang dihasilkan akan lebih rendah. Pada komposisi umpan CO2:CH4 = 50:50 pada 700°C, dihasilkan konversi CH4, konversi CO2, dan rasio H2/CO masing-masing sebesar 79,01%, 85,99%, dan 0,915. Sedangkan pada komposisi umpan CO2:CH4 = 70:30 pada suhu yang sama, dihasilkan konversi CH4, konversi CO2, dan rasio H2/CO masing-masing sebesar 97,10%, 57,40%, dan 0,68. Simulasi proses DRM dengan rasio CO2:CH4 = 70:30 juga dilakukan menggunakan model 1D homogen semu dengan pencampuran aksial. Hasil simulasi menunjukkan bahwa pada penelitian ini, faktor difusi tidak mempengaruhi konversi reaktan dan rasio produk, tetapi hanya meningkatkan kebutuhan volume reaktor.

Greenhouse gases, dominated by CO2 and CH4 gases, have become an intensive focus in the global effort to address rapid climate change. Solutions such as the use of renewable energy sources, efficient waste management, and the development of environmentally friendly technologies, including methods like dry reforming of methane (DRM), are key in the global effort to reduce CO2 and CH4 emissions. The Natuna natural gas reserve, containing 70% CO2 and 30% CH4, offers a promising opportunity to produce synthetic gas (syngas) through the DRM process. DRM is a catalytic process that converts CH4 and CO2 into a mixture of synthesis gas, hydrogen (H2), and carbon monoxide (CO). The DRM process is catalytic and requires the use of a catalyst to facilitate the reaction. Nickel-based catalysts are commonly used due to their proven high performance in the DRM process. In this study, the determination of kinetic parameters in a fixed bed reactor was established as the foundation for developing operating conditions for the DRM process. The modeling in this research followed the Langmuir-Hinshelwood mechanism with the surface reaction as the rate-determining step (RDS). The results showed that the simulation data had an error value below 5%, indicating that the kinetic parameters used in the simulation are valid for reactor modeling. Modeling was then conducted using a basic 1D pseudohomogeneous model. Based on the simulation results, a feed composition of CO2:CH4 = 70:30 will result in higher CH4 conversion compared to a composition of CO2:CH4 = 50:50. However, at the same time, the CO2 conversion and the H2/CO ratio produced will be lower. With a feed composition of CO2:CH4 = 50:50 at 700°C, CH4 conversion, CO2 conversion, and the H2/CO ratio were 79.01%, 85.99%, and 0.915, respectively. Meanwhile, with a feed composition of CO2:CH4 = 70:30 at the same temperature, CH4 conversion, CO2 conversion, and the H2/CO ratio were 97.10%, 57.40%, and 0.68, respectively. Simulation of the DRM process with CO2:CH4 = 70:30 was also carried out using a 1D pseudohomogeneous model with axial mixing. The simulation results show that in this study, the diffusion factor does not affect reactant conversion and product ratio, but only increases the required reactor volume."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rika Andriyani Putri
"Pada penelitian ini, sintesis nanopartikel ZnO, nanopartikel GdFeO3, dan nanokomposit ZnO/GdFeO3 secara green synthesis berhasil dilakukan menggunakan ekstrak daun tempuyung (Sonchus arvensis L.) yang berperan sebagai sumber basa lemah dan capping agent. Hasil sintesis selanjutnya dikarakterisasi menggunakan instrumentasi spektrofotometer UV-Vis, UV-Vis DRS, spektroskopi FTIR, XRD, PSA, SEM-EDX, dan TEM. Hasil karakterisasi spektrofotometer UV-Vis menunjukkan adanya puncak serapan UV-Vis nanopartikel ZnO pada panjang gelombang maksimum 371 nm. Hasil karakterisasi UV-Vis DRS menunjukkan bahwa nilai band gap nanopartikel ZnO, nanopartikel GdFeO3, dan nanokomposit ZnO/GdFeO3 berturut-turut sebesar 3.2 eV, 2.65 eV, dan 2.8 eV. Berdasarkan hasil karakterisasi XRD, nanopartikel ZnO memiliki struktur hexagonal wurtzite dan nanopartikel GdFeO3 memiliki struktur orthorombic. Hasil karakterisasi PSA menunjukkan bahwa distribusi ukuran rata-rata partikel ZnO/GdFeO3 berada pada rentang 50.75-141.8 nm. Berdasarkan hasil karakterisasi SEM, nanopartikel GdFeO3 berbentuk spherical dan nanokomposit ZnO/GdFeO3 berbentuk semi-spherical. Berdasarkan hasil karakteri TEM, ukuran rata-rata partikel nanopartikel GdFeO3 dan nanokomposit ZnO/GdFeO3 beruturt-turut sebesar 41.4 nm dan 33.3 nm. Nanopartikel ZnO, nanopartikel GdFeO3, dan nanokomposit ZnO/GdFeO3­ diuji aktivitas fotokatalitiknya untuk mendegradasi senyawa zat warna malasit hijau di bawah sinar tampak. Persentase degradasi malasit hijau menggunakan nanopartikel ZnO, nanopartikel GdFeO3, dan nanokomposit ZnO/GdFeO3 berturut-turut yaitu sebesar 72.06%, 67.47%, dan 91.49% selama 2 jam waktu penyinaran. Reaksi fotodegradasi malasit hijau nanokomposit ZnO/GdFeO3 mengikuti kinetika orde pseudo satu.

In this research, ZnO nanoparticles, GdFeO3 nanoparticles, and ZnO/GdFeO3­ nanocomposites have been synthesized by Sonchus anversis L. leaf extract as a source of weak bases and capping agent. The results have been characterized using UV-Vis spectrophotometer, UV-Vis DRS, FTIR spectroscopy, XRD, PSA, SEM-EDX, and TEM instrumentations. UV-Vis spectrophotometer characterization results showed the UV-VIS peak absorption of ZnO nanoparticles at λmax 371 nm. UV-Vis DRS characterization results showed the band gap value for ZnO nanoparticles, GdFeO3 nanoparticles, and ZnO/GdFeO3­ nanocomposites were 3.2 eV, 2.65 eV, dan 2.8 eV. Based on XRD characterization results, ZnO nanoparticles have a hexagonal wurtzite structure and GdFeO3 nanoparticles have an orthorhombic structure. PSA characterization results showed that the average sized distribution of ZnO/GdFeO3 particles in range 50.75-141.8 nm. Based on SEM characterization results, GdFeO3 nanoparticles have a spherical shaped and ZnO/GdFeO3 nanocomposites have a semi-spherical shaped. Based on TEM characterization results, the average size of GdFeO3 nanoparticles and ZnO/GdFeO3 nanocomposites were 41.4 nm and 33.3 nm. ZnO nanoparticles, GdFeO3 nanoparticles, and ZnO/GdFeO3­ nanocomposites have been tested for photocatalytic to degraded pigment compounds of malachite green under visible light. The percentage of malachite green degradation with ZnO nanoparticles, GdFeO3 nanoparticles, and ZnO/GdFeO3­ nanocomposites were 72.06%, 67.47%, dan 91.49% for 2 hours irradiations. The calculations of reaction kinetics of malasite green photodegradation was found that nanocomposite ZnO/GdFeO3 reaction followed pseudo first-order kinetics.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Amalia Ridwanna Putri
"Nanopartikel ZnO dengan nilai energi celah pita yang tinggi sebesar 3,14 eV diketahui memiliki aktivitas fotokatalitik yang baik hanya di bawah penyinaran sinar ultraviolet. Maka dari itu, modifikasi ZnO dengan InNbO4 dengan nilai energi celah pita sebesar 2,68 eV dilakukan untuk meningkatkan aktivitas fotokatalitik di bawah iradiasi sinar tampak. Pada studi ini, nanokomposit ZnO/InNbO4 berhasil disintesis dengan metode green synthesis menggunakan ekstrak daun rosemary yang mengandung metabolit sekunder alkaloid sebagai sumber basa lemah dan saponin sebagai capping agent. Untuk mengetahui sifat struktural, optik, maupun morfologi dari nanopartikel dan nanokomposit yang dihasilkan, dilakukan karakterisasi menggunakan instrumen FTIR, XRD, Spektrofotometer UV-Vis, UV-Vis DRS, dan SEM-EDS. Aktivitas fotokatalitik nanokomposit ZnO/InNbO4 dievaluasi dengan reaksi degradasi malasit hijau di bawah iradiasi sinar tampak. Hasil yang diperoleh menunjukkan bahwa nanokomposit ZnO/InNbO4 dengan konstanta laju reaksi sebesar 1,905 x 10-2 min-1 memiliki persentase degradasi tertinggi yaitu sebesar 91,75% selama 2 jam apabila dibandingkan dengan nanopartikel ZnO maupun nanopartikel InNbO4 yang masing-masing menunjukkan persentase degradasi sebesar 52,26% dan 74,43%.

ZnO nanoparticles was known to have a good photocatalytic activity only under the irradiation of ultraviolet light due to its wide band gap of 3,14 eV. A modification of ZnO with InNbO4 nanoparticles with a band gap energy of 2,68 eV then was conducted to increase the photocatalytic activity under visible light. In this study, the ZnO/InNbO4 nanocomposite have been successfully synthesized using green synthesis method with Rosmarinus officinalis L. leafs extract that contains secondary metabolites such as alkaloid as weak bases source and saponin as capping agent. The nanoparticles and nanocomposite were characterized with FTIR, XRD, UV-Vis DRS, and SEM-EDS instruments to identify the structural, optic, and morphology characteristics. Photocatalytic activity of ZnO/InNbO4 nanocomposite was evaluated from its degradation of Malachite Green under visible light. It was evidenced that ZnO/InNbO4 nanocomposite, with its reaction rate constant of 1,905 x 10-2 min-1, reached the highest percentage of 91,75% Malachite Green degradation within two hours in comparison to ZnO nanoparticles or InNbO4 nanoparticles which only reached 52,26% and 74,43% respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roni Kharman Sholeh Sardjito
"ABSTRAK
Telah dilakukan sintesis polimer konduktif melalui proses rekayasa polimerisasi anilin menjadi Polyaniline Emeraldine Salt (PANi-ES). Penetralan sifat PANi diperoleh setelah proses pencucian sehingga berubah menjadi Polyaniline Emeraldine Base (PANi-EB). Tahapan ini dilanjutkan dengan tahapan pengkayaan muatan listrik melalui proses protonasi beberapa jenis garam (KSO4, KCl, K2CO3 dan NaSO4) dalam kurun waktu 10 jam untuk menjadi PANi conductive. Proses polimerisasi dimulai setelah pencampuran antara larutan HCl mengandung anilin dan larutan HCl mengandung Ammonium Persulphate (APS). Berlangsungnya proses polimerisasi disertai dengan peningkatan temperatur, kekentalan, ukuran partikel serta perubahan warna larutan. Hasil karakterisasi terhadap larutan selama berlangsungnya proses polimerisasi menunjukkan bahwa kekentalan larutan meningkat dari 426 mPa.s menjadi 1315 mPa.s; ukuran partikel rata-rata naik dari 6 m menjadi 33 m. Peningkatan nilai kekentalan dan ukuran rata-rata partikel terkait dengan pembentukan dan pertumbuhan rantai polimer pada tahapan inisiasi dan propogasi. Proses polimerisasi berhenti ketika tidak lagi terjadi perubahan indicator laruran. Pengkayaan muatan melalui pemberian larutan garam telah meningkatkan nilai konduktivitas listrik PANi. Namun nilai konduktivitas PANi terbesar hanya diperoleh dari protonasi garam KCl sebesar 2,12 x 10-4 S/cm. Hasil karakterisasi PANi dengan FTIR memastikan bahwa pola serapan IR yang diperoleh adalah pola serapan PANi dan protonasi dengan garam tidak mempengaruhi pola serapan IR. Lalu, hasil karakterisasi dengan menggunakan Xray difraksi menunjukan persebaran atom yang tidak teratur atau amorf pada sekitar 2Ɵ = 25°. Disimpulkan bahwa, sintesis PANi conductive melalui proses polimerisasi dan pengkayaan muatan dengan larutan garam telah tercapai dengan baik.

ABSTRAK
Conductive polymer has successfully been synthesized through the engineering process of polymerization of aniline containing solution toward the Polyaniline Emeraldine Salt (PANi-ES) as the intermediate product. Deprotonation of PANiES was carried out through a cleaning treatment of PANi-ES by washing. To this stage the PANi-ES changed to the Polyaniline Emeraldine Base (PANi-EB). The stage of enrichment of PANi by electric charges was conducted through protonation process using some types of salt (K2SO4, KCl, K2CO3 and NaSO4) within 10 hours duration time of polimerization. The polymerization process begins after the mixing between the HCl solution containing aniline and HCl solution containing Ammonium Persulphate (APS). The course of the polymerization process was accompanied by an increase in temperature, viscosity, particle size and the color changes of the solution. Results of the characterization of the solution during the polymerization process showed that the viscosity of the solution increased from 426 mPa.s to 1315 mPa.s; The mean particle size increased from 6 m to 33 m. The increased in viscosity values and mean particle sizes associated with the formation and growth of the polymer chains during initiation and propogation process. The polymerization process stopped when there have bee no longer indicators change in the solution. Enrichment of electrical charges through the protonation by salt solution has improved the electrical conductivity values of the PANi. But the largest conductivity value of 2.12 x 10-4 S/cm for the PANi was obtained only from protonated by KCl. The characterization of enriched PANi as the final product with FTIR ensure that the IR absorption pattern is the typical that of PANi. Protonated with salt to the PANi does not affect the pattern of IR absorption. Then, The X-ray diffracton pattern indicates that the chains are strong disordered. The doped PANi shows a broad amorphous scattering aroung 2Ɵ = 25°. It is concluded that, the synthesis of conductive PANi through polymerization and electrical charge enrichment with salt solution has been successfully reached.
"
2016
S63701
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafi Ramadhan
"Pada penelitian ini, sintesis nanokomposit ZnO/CeMnO3 dilakukan dengan metode green synthesis menggunakan ekstrak daun bayam raja (Amaranthus viridis). Metabolit sekunder pada ekstrak digunakan sebagai basa lemah dan capping agent dalam proses sintesis nanokomposit. Untuk mengidentifikasi sifat optik dan struktural nanopartikel serta nanokomposit, dilakukan dikarakterisasi dengan instrumen UV-Vis DRS, FTIR, XRD, Photoluminescence, SEM-EDX, dan HRTEM. Nanokomposit ZnO/CeMnO3 menunjukkan nilai band gap yang menurun dibanding ZnO, yaitu pada 2,68 eV. Selain itu, karakterisasi HRTEM mengkonfirmasi terbentuknya ZnO/CeMnO3 heterojunction dengan d spacing ZnO (110) = 0,162 nm dan d spacing CeMnO3 = 0,31 nm. Ukuran partikel rata-rata ZnO/CeMnO3 adalah 7,46 nm. Aktivitas fotokatalitik nanokomposit ZnO/CeMnO3 diuji untuk mendegradasi larutan malasit hijau di bawah sinar tampak selama 120 menit serta dibandingkan dengan aktivitas fotokatalitik nanopartikel ZnO dan CeMnO3. Persentase fotodegradasi malasit hijau oleh ZnO/CeMnO3, CeMnO3, dan ZnO masing-masing bernilai 92,69%; 69,46%; dan 37,5%. Kinetika reaksi fotodegradasi nanokomposit ZnO/CeMnO3 mengikuti model orde satu semu dengan konstanta laju senilai 1,031 x 10-2 min-1. Peningkatan aktivitas fotokatalitik nanokomposit ZnO/CeMnO3 disebabkan karena adanya penurunan bandgap ZnO dan rendahnya laju fotorekombinasi electron-hole yang masing-masing dibuktikan oleh analisis spektroskopi UV-Vis DRS dan photoluminescence.

In this study, ZnO/CeMnO3 nanocomposites were synthesized using green synthesis method using green amaranth leaf extract (Amaranthus viridis). The secondary metabolites present in the extract were utilized as a weak base and capping agent during the synthesis processes. To identify the optical and structural properties of the synthesized nanoparticles and nanocomposites, characterization was performed using UV-DRS, FTIR, XRD, Photoluminescence, SEM-EDX, and HRTEM instruments. The synthesized ZnO/CeMnO3 nanocomposite showed a decreased band gap value compared to ZnO, at 2,68 eV. Additionally, XRD and HRTEM characterization confirmed the formation of the ZnO/CeMnO3 composite on a nanometer scale with the average particle size at 7,46 nm. The photocatalytic activity of the ZnO/CeMnO3 nanocomposite was tested by degrading a malachite green solution under visible light for 120 minutes and compared with the photocatalytic activity of ZnO and CeMnO3 nanoparticles. The percentages of malachite green photodegradation by ZnO/CeMnO3, CeMnO3, and ZnO were 92,69%; 69,46%; and 37,5%, respectively. The photodegradation reaction kinetics of the ZnO/CeMnO3 nanocomposite were also determined to follow a pseudo-first-order model with a rate constant of 1.031 x 10-2 min-1. The increase in photocatalytic activity of the ZnO/CeMnO3 nanocomposite is due to a decrease in the bandgap and a low rate of electron-hole photorecombination which is proven by UV-Vis DRS and photoluminescence analysis respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>