Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 172732 dokumen yang sesuai dengan query
cover
Ridho Budiharto
"This study was aimed to identifying product attribute and calculate valence from customer sentiment based on identified products attribute in the Garuda Indonesia Mobile App. The approach used in this study illustrated the use of text mining methods to get insights from review data, which was valuable to generate recommendations for mobile application development. The attribute identified by collaborating the key user interview, literature review and text mining analysis. Later, the identified attribute will be used in lexicon-based sentiment analysis using polarity term combined with negator and amplifier. The polarity term then mapped into identified application attributes using dependency parsing combined with lemmatization, pos tagging, and tokenization. We applied the proposed method on customer reviews of Garuda Indonesia Mobile App scraped from Google Play Store and Apple App Store. The result showed that the valence of sentiment from customer reviews have a positive relationship with star rating and negative relationship with the number of reviews. This study also indicated several application attributes considered relevant by users and their valence.

Penelitian ini bertujuan untuk mengidentifikasi atribut produk dan menghitung valensi dari sentimen pelanggan berdasarkan atribut produk yang diidentifikasi di Garuda Indonesia Mobile App. Pendekatan yang digunakan dalam penelitian ini menggambarkan penggunaan metode penambangan teks untuk mendapatkan wawasan dari data ulasan, yang sangat berharga untuk menghasilkan rekomendasi guna pengembangan aplikasi seluler. Atribut diidentifikasi dengan mengkolaborasikan wawancara pengguna inti, tinjauan literatur dan analisis penambangan teks. Nantinya, atribut yang teridentifikasi akan digunakan dalam analisis sentimen berbasis leksikon yang dikombinasikan dengan negator dan penguat. Sentimen kemudian dipetakan ke dalam atribut aplikasi yang teridentifikasi menggunakan dependensi parsing dikombinasikan dengan lemmatization, POS tagging, dan tokenization. Kami menerapkan metode ini pada ulasan pelanggan tentang Aplikasi Seluler Garuda Indonesia yang diambil dari Google Play Store dan Apple App Store. Hasil penelitian menunjukkan bahwa valensi sentimen dari ulasan pelanggan berhubungan positif dengan peringkat bintang dan hubungan negatif dengan jumlah ulasan. Studi ini juga menunjukkan beberapa atribut aplikasi yang dianggap relevan oleh pengguna serta valensinya."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T54651
UI - Tesis Membership  Universitas Indonesia Library
cover
Moh. Hasan Basri
"Perbankan di Indonesia telah meluncurkan aplikasi perbankan seluler dengan tujuan untuk memberikan pengalaman layanan yang baik bagi nasabah. Bank harus meningkatkan efektivitas aplikasi perbankan seluler mereka untuk memberikan peningkatan nilai aplikasi tersebut. Dalam upaya menemukan ruang perbaikan bagi perbankan, penelitian ini dilakukan untuk mengetahui topik yang umum dibicarakan serta mengetahui sentimen ulasan pengguna layanan perbankan seluler di Indonesia pada ulasan Google Play yang dimiliki oleh BNI, BCA, dan Mandiri. Penelitian ini menambah penerapan text mining dan membantu pengembang platform digital perbankan ulasan dengan efisien, dan mendukung pengambilan keputusan dan strategi bisnis unggul. Tiga algoritma klasifikasi sentimen, yaitu logistic regression, naïve bayes, dan support vector machine digunakan dalam penelitian ini. Algoritma dijalankan pada pemodelan train data, k-fold cross validation data train, k-fold cross validation semua data, dan prediksi data test. Pemodelan topik adalah LDA (Latent Dirichlet Allocation) untuk kategori sentimen. Algoritma logisitc regression memiliki akurasi tertinggi yaitu 97,00 %. Model digunakan pada data baru, diketahui ulasan didominasi dengan sentimen negatif yaitu sebesar 62,22% atau sebanyak 7.374 sedangkan ulasan sentimen positif sebesar 37,78% atau sebanyak 4.477 ulasan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen positif memiliki nilai koheren tertinggi 0,649 dengan jumlah 19 topik membahas kemudahan dan kelancaran transaksi, kelengkapan fitur, keamanan, akses dan login, kecepatan dan efisiensi, dan kemudahan penggunaan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen negatif memiliki nilai koheren tertinggi 0,440 dengan jumlah 18 topik membahsas push notifikasi uang masuk, top-up dan transfer gagal, kesulitan login aplikasi perbankan seluler, update mengganggu, gagal transaksi, saldo terpotong saat gagal transaksi, error sistem, kendala BI-Fast dan kartu, dan masalah verifikasi. Kata kunci: pemodelan topik, analisis sentimen, text mining, aplikasi perbankan seluler, ulasan aplikasi.

Banks in Indonesia have launched mobile banking to provide good experience for customers. However, digital mobile banking services in Indonesia are considered unideal. Banks shall increase the effectiveness of their mobile banking applications to gain value added. Finding room for improvement can be done by analyzing mobile banking user feedback in the Google Play review column. This research aims to determine the topics that are commonly discussed and expected as well as to find out the sentiment of reviews of mobile banking owned by BNI, BCA, and Mandiri. This research enhances the application of text mining and helps digital banking platform developers analyze reviews efficiently, supporting decision-making and superior business strategies. Three sentiment classification algorithms, namely logistic regression, naïve Bayes, and support vector machine were used in this research. Each algorithm is run for modeling train data, k-fold cross validation of train data, k-fold cross validation of all data, and prediction of test data. Topic modeling is LDA (Latent Dirichlet Allocation) for each sentiment category. The logical regression algorithm is the highest accuracy, 97.00%. Apply model for new data, 62.22% or 7,374 reviews are dominated by negative sentiment, while positive sentiment reviews are 37.78% or 4,477 reviews. Topic modeling of mobile banking review with positive sentiment has the highest coherent value of 0.649 with 19 topics discusses ease and smoothness of transactions, completeness of features, security, access and login, speed and efficiency, and ease of use. Meanwhile, topic modeling with negative sentiment has the highest coherent value of 0.440 with a total of 18 topics discusses push notifications for incoming money, failed top-ups and transfers, difficulties login to mobile banking, annoying updates, failed transactions, balances deducted when transactions fail, system errors, BI-Fast and card problems, and verification problems."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Satria Ramadhan
"Aplikasi mobile Garuda Indonesia merupakan salah satu channel PT Garuda Indonesia untuk memberikan layanan kepada pelanggannya. Penelitian ini bertujuan untuk mengetahui faktor yang memengaruhi Intention to use, agar dapat meningkatkan kemauan pelanggan untuk menggunakan aplikasi mobile Garuda Indonesia. Model penelitian ini merupakan hasil pengembangan dari model penelitian yang dikembangkan oleh Suki dan Suki pada tahun 2017, dengan menambahkan variabel UI Attractiveness.
Penelitian ini merupakan penelitian kuantitatif yang menggunakan metode survey research, dengan jumlah responden sebanyak 101 responden yang metode penyebaran kuesionernya disebarkan melalui media sosial Twitter menggunakan Google Form. Data kuesioner yang telah dikumpulkan diolah menggunakan metode Partial Least Square ndash; Structural Equation Modelling PLS-SEM dengan perangkat lunak Smart-PLS.
Hasil pengujian data kuesioner menunjukkan bahwa variabel Subjective Norm merupakan variabel terkuat yang berpengaruh langsung terhadap Intention to use individu pada aplikasi mobile Garuda Indonesia, disusul oleh variabel Airline Image dan variabel Perceived ease of use.

Garuda Indonesia mobile application is one of channel for Garuda Indonesia to give a service to their customer. This study aims to determine the factors that affecting the Intention to use, in order to increase the willingness of customers to use Garuda Indonesia mobile application. The research model is the result of developing by Suki and Suki on 2017, by adding UI Attractiveness variable.
This research is quantitative research that using survey method, with total of respondents is 101 respondents, which was distributed through Twitter using Google Form. The questionnaire data that has been collected is processed using Partial Least Square ndash Structural Equation Modelling PLS SEM method with Smart PLS software.
The result shows that the Subjective Norm variable is the strongest variable that directly influence the Intention to use of Garuda Indonesia mobile application, followed by Airline Image and Perceived ease of use variable.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Erry Suprayogi
"Popularitas telepon pintar dan aplikasi seluler membuat unduhan dan pengguna aplikasi meningkat secara eksponensial. Pengguna dapat memberikan ulasan terkait dengan penggalaman menggunakan aplikasi, ulasan ini dapat berisi keluhan atau saran yang berharga untuk dikaji lebih lanjut. Namun jumlah ulasan yang sangat banyak menyulitkan untuk mencari dan memahami informasi yang terkandung pada teks ulasan. Untuk mengatasi permasalahan tersebut pada penelitian ini mengusulkan model yang dapat menggali informasi serta mengkategorikan konten dan sentimen ulasan dengan menggunakan teknik pembelajaran mesin. Algoritme SentiStrength, Support Vector Machine SVM , Na ve Bayes, Logistic Regresion, Latent Dirichlet Allocation LDA dan Non-negative Matrix Factorization NMF digunakan pada penelitian ini. Hasil dari penelitian didapatkan rerata presisi sentimen ulasan mencapai 85 dan algoritme terbaik untuk klasifikasi konten ulasan didapatkan menggunakan SVM dengan nilai rerata f1-score 84.38 menggunakan fitur unigram sedangkan NMF berkerja lebih baik daripada LDA untuk menemukan topik pada teks ulasan.

The popularity of smartphones and mobile applications makes app downloads and users of applications rises exponentially. Users can provide reviews related to their experience during using the app, these reviews may contain valuable complaints or suggestions which can be used for further in depth review based on the reviews given before. However, the large number volume of the reviews can make it very difficult to find and understand the information contained in a review. To solve the problem in this study proposes a model that can diging information by categorizing the content and sentiment reviews using machine learning technique. The algorithm SentiStrength, Support Vector Machine SVM , Na ve Bayes, Logistic Regression, Latent Dirichlet Allocation LDA and Non-negative Matrix Factorization NMF are used in this study. The result of the research shows that the average sentiment precision of review is 85 and the best algorithm for the review content classification is obtained using SVM with an average f1-score 84.38 using unigram feature whereas the NMF works better than LDA to find topics in a reviews.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jwalita Galuh Garini
"IndiHome melalui IndiHome TV mempertahankan posisinya sebagai penyedia saluran televisi terlengkap di Indonesia. Layanan ini juga diperluas ke aplikasi mobile dan situs web. Namun perkembangan pada platform web diketahui sudah lebih cepat dibandingkan platform mobile, padahal terdapat kebutuhan pelanggan untuk peningkatan kenyamanan, kemudahan, dan kelengkapan fitur pada aplikasi mobile. Hasil observasi dan wawancara juga menunjukkan aplikasi mobile IndiHome TV tidak mencapai target rating yang diharapkan yang menjadi indikasi pengguna belum puas dengan aplikasi saat ini. Salah satu akar permasalahan yang diidentifikasi adalah perbaikan aplikasi hanya berasal dari laporan. Sementara laporan tersebut belum sepenuhnya menggambarkan kebutuhan pengguna. Pemanfaatan ulasan pengguna perlu dimaksimalkan sebagai masukan dalam perbaikan aplikasi agar lebih tepat sasaran. Ulasan berpotensi dapat digunakan untuk mengetahui kebutuhan pengguna. Penelitian ini bertujuan melakukan analisis sentimen dan pemodelan topik terhadap ulasan pengguna di Google Play Store dan Apple App Store. Analisis sentimen dilakukan menggunakan Naïve Bayes dan Support Vector Machines untuk mengklasifikasikan ulasan ke dalam positif, netral, dan negatif. Sementara pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation terhadap ulasan sentimen positif dan negatif. Hasil eksperimen menunjukkan model Support Vector Machines secara umum mengungguli model Naïve Bayes. Model terbaik yang diperoleh menghasilkan performa accuracy 80,53%, precision 80,47%, recall 73,28%, dan F1-score 75,89%. Model tersebut mampu mengatasi ketidakseimbangan data dan menunjukkan kemampuan generalisasi yang baik. Hasil klasifikasi sentimen pada keseluruhan data menunjukkan dominasi kelas negatif dan kelas positif dengan 42,30% dan 40,91% dari total ulasan. Sementara pemodelan topik menghasilkan 4 topik pada ulasan positif dan 8 topik pada ulasan negatif. Hasil tersebut dapat digunakan sebagai acuan perbaikan aplikasi agar perusahaan dapat membuat aplikasi yang sesuai dengan harapan pengguna.

IndiHome, through IndiHome TV, maintains its position as Indonesia's most complete television channel provider. This service is also extended to mobile applications and websites. However, developments on web platforms are known to be faster than mobile platforms, even though there is a customer need for increased comfort, convenience, and completeness of features in mobile applications. The observations and interviews also show that the IndiHome TV mobile application did not reach the expected rating target, which is an indication that users are not satisfied with the current application. One of the root causes identified was that application improvements only came from reports. Meanwhile, the report does not fully describe user needs. User reviews need to be maximized as input in improving applications to make them more targeted. Reviews can be used to determine user needs. This research aims to conduct sentiment analysis and topic modeling on user reviews on the Google Play Store and Apple App Store. Sentiment analysis used Naïve Bayes and Support Vector Machines to classify reviews into positive, neutral, and negative. Meanwhile, topic modeling was carried out using Latent Dirichlet Allocation for positive and negative sentiment reviews. Experimental results show that the Support Vector Machines model generally outperforms the Naïve Bayes model. The best model obtained produced an accuracy performance of 80,53%, precision of 80,47%, recall of 73,28%, and F1-score of 75,89%. The model can overcome data imbalance and shows good generalization ability. The sentiment classification results on the entire data show the dominance of the negative and positive classes, with 42,30% and 40,91% of the total reviews. Meanwhile, topic modeling produced four topics with positive reviews and eight topics with negative reviews. These results can be used as a reference for application improvements so that companies can create applications that meet user expectations."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Yudo Ekanata
"ABSTRAK
Jumlah ulasan pengguna untuk sebuah aplikasi mobile bisa mencapai ribuan sehingga membutuhkan waktu banyak bagi pengembang aplikasi untuk memilah-milah dan mencari informasi yang penting untuk pengembangan aplikasi selanjutnya. Oleh karena itu penelitian ini bertujuan untuk melakukan klasifikasi secara otomatis terhadap ulasan pengguna aplikasi mobile yang dimiliki oleh PT PQR. Klasifikasi otomatis yang dilakukan pada penelitian ini menggunakan pendekatan machine learning. Fitur-fitur yang diekstrak dari data adalah unigram, bigram, star rating, panjang ulasan, serta rasio jumlah kata bersentimen positif dan negatif. Untuk algoritma klasifikasi digunakan Na ve Bayes, Support Vector Machine, Logistic Regression dan Decision Tree. Hasil percobaan menunjukkan bahwa fitur bigram dan star rating berdampak negatif pada performa klasifikasi. Algoritma Na ve Bayes menghasilkan precision terbaik sebesar 85,3, sedangkan algoritma Logistic Regression menghasilkan recall dan F-measure terbaik sebesar 85.

ABSTRACT
The number of user reviews for a mobile app can reach thousands so it will take a lot of time for app developers to sort through and find information that is important for further app development. Therefore, this study aims to classify automatically mobile application user reviews of PT PQR. Automatic classification conducted in this study using machine learning approach. The features extracted from the data are unigram, bigram, rating score, review length, as well as the ratio of the number of words contain positive and negative sentiment. For classification algorithms, we used Na ve Bayes, Support Vector Machine, Logistic Regression and Decision Tree. The experimental results show that bigram and star rating has negative impact on the classifier performance. Na ve Bayes algorithm gives the best precision of 85,3 , while Logistic Regression gives the best recall and F measure of 85."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Brigita Sance
"Peningkatan aktivitas pembayaran dan transaksi online mendorong transformasi produk dan layanan perbankan. Di era big data, ulasan menjadi penting bagi bank untuk mengetahui tingkat kepuasan nasabah sebagai masukan untuk perbaikan. Saat bank merilis aplikasi mobile banking di Google Play Store, pelanggan dapat memberikan ulasan tentang pengalaman mereka menggunakan aplikasi tertentu. Tujuan dari penelitian ini adalah untuk memahami sentimen pengguna aplikasi mobile banking melalui analisis sentimen. Metode Natural Language Processing (NLP) digunakan untuk mengekstrak data teks, meliputi: pra-proses, analisis sentimen setiap ulasan dan analisis lima dimensi kualitas layanan berbasis mobile. Beberapa masalah dan dimensi kualitas layanan harus ditingkatkan untuk memenuhi kebutuhan pelanggan. Dengan adanya kemungkinan pengguna untuk terus menggunakan mobile banking, bank dapat memprediksi perilaku pelanggan di masa mendatang.

Increased online payment and transaction activities drive the transformation of banking products and services. In the big data era, reviews are important for banks to discover customer’s satisfaction levels as input for improvement. As banks release mobile banking applications in Google Play Store, customers can leave reviews regarding their experience using certain applications. The purpose of this study is to understand customer sentiment of mobile banking applications through sentiment analysis. Natural Language Processing (NLP) method is used to extract the text data, including: pre-processing, analysing the sentiment of each review and analysing the sentiment of five dimensions of e-service quality. Some issues and dimensions of service quality should be improved to satisfy customers’ needs. Discovering the probability of continuing to use mobile banking, a bank may predict the future behaviour of the customers."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Monika Sari Dewi
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2003
S19401
UI - Skripsi Membership  Universitas Indonesia Library
cover
Habib Saputra
"Pada era digital saat ini, aplikasi Mobile Jaminan Kesehatan Nasional (JKN) telah menjadi alat penting dalam memudahkan akses dan manajemen layanan kesehatan masyarakat. Namun, untuk meningkatkan kualitas layanan dan kepuasan pengguna, perlu dilakukan analisis ulasan pengguna untuk memahami sentimen dan topik yang terkandung di dalamnya. Penelitian ini bertujuan untuk mengembangkan model analisis sentimen menggunakan metode Bidirectional Encoder Representations from Transformers (BERT) dan pendeteksian topik menggunakan metode Latent Dirichlet Allocation (LDA) pada ulasan pengguna aplikasi Mobile JKN. Penelitian ini menggunakan dataset yang terdiri dari ulasan pengguna aplikasi Mobile JKN yang dikumpulkan dari Play Store. Hasil dari penelitian ini menunjukkan bahwa model BERT yang dikembangkan berhasil mencapai akurasi sebesar 90% dalam melakukan analisis sentimen pada ulasan pengguna aplikasi Mobile JKN. Dari analisis sentimen tersebut, ditemukan bahwa dari 54.000 data yang akan dianalisis terdapat 14.748 data ulasan positif, 3.950 data ulasan netral, dan 35.302 data ulasan negatif yang terdeteksi oleh model BERT yang telah dikembangkan. Selanjutnya, melalui pendekatan LDA, penelitian ini juga berhasil mengidentifikasi 6 topik utama yang muncul dalam ulasan pengguna aplikasi Mobile JKN yang memiliki coherence value sebesar 0,466131. Topik-topik tersebut yaitu, topik pertama mengenai Pelayanan Mobile JKN, topik kedua perubahan data peserta, topik ketiga pembayaran iuran, topik keempat verifikasi nomor handphone, topik kelima update dan login pada aplikasi, dan topik keenam pendaftaran online. Hasil sentimen pada masing-masing topik menunjukkan bahwa topik 1, 2, dan 3 memiliki ulasan dengan sentimen positif lebih banyak daripada sentimen negatif, sedangkan topik 4, 5, dan 6 memiliki ulasan dengan sentimen negatif lebih banyak daripada sentimen positif. Demikian untuk topik mengenai verifikasi nomor handphone, update dan login pada aplikasi, dan pendaftaran online harus dilakukan evaluasi untuk perbaikan aplikasi Mobile JKN kedepannya.

In the current digital era, the National Health Insurance (Jaminan Kesehatan Nasional or JKN) mobile application has become an essential tool in facilitating access and management of healthcare services for the public. However, to improve service quality and user satisfaction, it is necessary to analyze user reviews to understand the sentiments and topics contained within them. This research aims to develop a sentiment analysis model using the Bidirectional Encoder Representations from Transformers (BERT) method and topic detection using the Latent Dirichlet Allocation (LDA) method on user reviews of the JKN mobile application. The research utilizes a dataset consisting of user reviews of the JKN application collected from the Play Store. The results of this study show that the developed BERT model successfully achieved an accuracy of 90% in sentiment analysis of user reviews of the JKN mobile application. From the sentiment analysis it is known that of the 54,000 data to be analyzed, there are 14,748 positive reviews, 3,950 neutral reviews, and 35,302 negative reviews detected by the BERT model that has been developed. Furthermore, through the LDA approach, this research also successfully identified 6 main topics that emerged in user reviews of the JKN mobile application with a coherence value of 0.466131. These topics are, the first topic regarding Mobile JKN Services, the second topic is changing participant data, the third topic is payment of contributions, the fourth topic is handphone number verification, the fifth topic is updating and logging in to the application, and the sixth topic is online registration. The sentiment results for each topic show that topics 1, 2, and 3 have reviews with more positive sentiment than negative sentiment, while topics 4, 5, and 6 have reviews with more negative sentiment than positive sentiment. So that for topics regarding handphone number verification, updating and logging into applications, and online registration, an evaluation must be carried out to improve the Mobile JKN application in the future."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Shofwan Amrullah
"PT Traveloka Indonesia adalah salah satu OTA (Agent) terbesar se-Asia Tenggara, yang mengedepankan kepuasan pelanggan sebagai keunggulan kompetitif perusahaan. Namun saat ini, terdapat penurunan tingkat kepuasan pelanggan, dan juga terjadinya penurunan jumlah pengguna aktif aplikasi. Oleh karena itu, perlu dilakukan langkah-langkah seperti melakukan inovasi atau perbaikan fitur agar dapat meningkatkan kepuasan pelanggan dan juga menaikkan kembali jumlah pengguna aktif aplikasi. Pada aplikasi Android Traveloka, jumlah ulasan mencapai 700 ribu dalam kurun waktu 2 tahun terakhir, di mana platform Android merupakan platform yang mempunyai jumlah pengguna aplikasi Traveloka terbesar dibandingkan platform lainnya. Dengan banyaknya jumlah ulasan tersebut, perusahaan masih memilah-milah ulasan negatif dan positif serta mencari topik-topik yang paling sering dibicarakan secara manual, sehingga membutuhkan waktu yang sangat lama dan cenderung tidak akurat. Hal ini menyebabkan keluhan ataupun ulasan tersebut belum secara efektif dijadikan dasar untuk membuat inovasi baru ataupun untuk memperbaiki fitur yang ada, sehingga belum memberikan kontribusi terhadap proses peningkatan kepuasan pelanggan dan peningkatan jumlah pengguna aktif aplikasi. Oleh karena itu, pada penelitian ini diusulkan suatu model yang dapat mengategorikan sentimen serta melakukan pengelompokan topik-topik yang sering muncul dari seluruh ulasan pelanggan. Algoritma Bayes, Support Vector Machine Logistic Regression digunakan untuk membuat model yang dapat mengklasifikasi sentimen dari tiap ulasan ke dalam kelas positif ataupun kelas negatif. Selain itu, dilakukan proses pemodelan topik pada tiap kelas tersebut menggunakan algoritma Latent Dirichlet Allocation (LDA). Hasil penelitian menunjukkan bahwa algoritma terbaik untuk melakukan klasifikasi adalah SVM, dengan nilai f1-score rata-rata 0.98318, dan jumlah topik yang optimal untuk sentimen positif adalah 16 dan jumlah topik yang optimal untuk sentimen negatif adalah 12. Pada kelas sentimen positif, terdapat topik-topik yang menyinggung kelengkapan fitur serta banyaknya diskon dan promo, sedangkan pada kelas sentimen negatif, terdapat topik yang berhubungan dengan fitur refund dan produk paylater. Dengan diimplementasikannya model tersebut, diharapkan PT Traveloka dapat memilah-milah ulasan ke dalam kelas sentimen positif dan negatif dengan cepat dan akurat, serta dapat dengan cepat mengetahui daftar topik-topik yang paling banyak dibicarakan oleh penggunanya.

PT Traveloka Indonesia is one of the biggest Online Travel Agents in Southeast Asia, which prioritizes customer satisfaction as the company's competitive advantage. However, there is currently a decrease in customer satisfaction scores and numbers of active users. Therefore, it is necessary to take steps such as innovating or improving features to restore customer satisfaction scores and active users. On the Traveloka Android application, the number of reviews reached 700 thousand in the last two years, where the Android platform is the platform that has the most significant number of Traveloka users compared to other platforms. Nonetheless, Traveloka is still sorting through negative and positive reviews manually and manually searching for the most discussed topics, so it takes a long time and tends to be inaccurate. This lengthy process made customer reviews are yet to be effectively used for formulating innovations or finding existing features to improve, so they are yet to help increase customer satisfaction and the number of active users of the application. Therefore, this research proposes a model to categorize sentiments and group topics that often arise from all customer reviews. The Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression algorithm are used to create a model that can classify the sentiment of each review into a positive class or a negative class. In addition, the topic modeling process for each class is carried out using the Latent Dirichlet Allocation (LDA) algorithm. The results show that the best algorithm for classifying is SVM, with an average f1-score of 0.98318, and the optimal number of topics for positive sentiment is 16, and the optimal number of topics for negative sentiment is 12. There are topics about the completeness of features and the number of discounts and promos in the positive sentiment class, while in the negative sentiment class, there are topics related to the refund feature and pay later product. With the implementation of this model, it is hoped that PT Traveloka can sort reviews into positive and negative sentiment classes quickly and accurately and quickly find out the list of topics that users most discuss."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>