Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 76966 dokumen yang sesuai dengan query
cover
Esti Merindasari
"

Pengenalan emosi dasar melalui ekspresi wajah menjadi domain penelitian yang berkembang saat ini. Berbagai metode machine learning telah digunakan untuk permasalahan ini. Dewasa ini, metode deep learning terbukti lebih robust untuk penyelesaian domain pengenalan emosi dasar. Salah satu metode deep learning yang dapat digunakan adalah deep belief network-deep neural network (DBN). Metode ini sebelumnya berhasil diujikan untuk pengenalan citra CIFAR-10 dan MNIST, namun masih belum digunakan untuk dataset citra emosi wajah. Oleh karena itu, pada penelitian ini, kami menggunakan DBN-DNN untuk pengenalan emosi dasar. DBN-DNN diujikan dengan 2 (dua) skema eksperimen yakni DBN-DNN dimensi penuh dimensi tereduksi. Hasil dari kedua skema menunjukkan bahwa DBN-DNN berhasil diujikan pada dataset citra wajah MUG, CK+, dan IMED untuk pengenalan 7 (tujuh) kelas emosi dasar yaitu marah, jijik, takut, senang, netral, sedih, dan terkejut. Skema DBN- DNN dimensi penuh, berhasil mendapatkan akurasi pengenalan emosi dasar pada citra wajah dataset MUG sebesar 94.07%, dengan waktu komputasi yang cukup lama yakni 7 jam 13 menit. Berbeda halnya dengan pengenalan DBN- DNN dimensi penuh pada citra wajah dataset CK+ dan MUG, meskipun waktu yang dibutuhkan saat pengenalan cukup singkat yakni 11 menit untuk  CK+ dan 7 menit untuk IMED, akurasi yang didapatkan masih cukup kecil yakni 40.64% untuk CK+ dan 44.43% untuk IMED. Kecilnya akurasi pengenalan CK+ dan IMED, dipengaruhi oleh jumlah data yang kurang banyak, berbeda dengan MUG yang mencapai 9805 data. Sehingga, DBN-DNN kurang optimal dalam melakukan proses pembelajaran pada kedua dataset tersebut, CK+ dan IMED. Sedangkan, pada skema DBN-DNN dimensi tereduksi, akurasi berhasil meningkat baik untuk pengenalan pada dataset MUG, CK+ dan IMED. Akurasi pengenalan pada MUG mencapai 94.75%, CK+ 52.84%, dan IMED 56.58%. Waktu komputasi yang diperlukan dalam pengenalan pun juga lebih efisien khususnya pada dataset MUG, menjadi 3 jam 45 menit termasuk proses reduksi dimensi SVD di dalamnya. Hal ini berbeda untuk dua dataset lain, CK+ dan IMED, keduanya membutuhkan waktu cukup lama untuk proses reduksi dimensi karena SVD menggunakan jumlah dimensi 16384 untuk mendekomposisi matriks. Namun, jika waktu yang digunakan untuk proses DBN-DNN nya saja relatif lebih singkat dari DBN-DNN dimensi penuh, yakni 2 menit untuk CK+ dan 1 menit untuk IMED.

 


Facial emotion recognition using facial expression has been popular in these past years. There are many machine learning methods used for recognition tasks.  Currently, the most robust method for this domain is deep learning. One type of deep learning method that can be used is the deep belief network – deep neural network (DBN-DNN). Although DBN-DNN has been used for recognizing CIFAR-10 and MNIST datasets, it has not yet been used for facial emotion recognition. Hence, in this research, we attempt to use the DBN-DNN for recognizing facial emotions. This research consists of two experimental schemes, DBN-DNN with full dimension and DBN-DNN with the reduced dimension. The result of these experiments shows that using the MUG facial emotion dataset, DBN-DNN has successfully recognized 7 (seven) classes of basic emotions, angry, disgust, fear, happy, neutral, sadness, and surprise. DBN- DNN with full dimension has successfully reached 94.07% accuracy for recognizing 7 ( seven) basic emotions from the MUG dataset, even the run time needed is not efficient, 7 hours and 13 minutes. Meanwhile, the CK+ dan IMED dataset is not quite good at accuracy, even the run time is quite short, 11 minutes for CK+ dataset and 7 minutes for the IMED dataset. The accuracy for the CK+ dataset reaches 40,64% and 44.43% for the IMED dataset. This accuracy occurs because of the lack number of data that is processed by DBN-DNN. DBN-DNN is good at a lot of the number of data, like MUG with 9805 data. On the other hand, DBN-DNN with reduced dimension has successfully reached higher accuracy for MUG (94.75%), CK+ (52.84%) and IMED (56.58%) The run time also more efficient, especially on MUG Dataset (3 hours and 45 minutes). But, CK+ and IMED need a longer time for finishing the dimensionality reduction with SVD. Its because the number of dimensions processed by SVD uses a full dimension of the matrix, 16384. Hence, it needs more time to run the SVD. But, the time need for processing DBN-DNN after finishing the SVD, only need 2 minutes for CK+ dataset and 1 minute for IMED dataset.

 

"
T54428
UI - Tesis Membership  Universitas Indonesia Library
cover
Raynaldi Suhaili
"ABSTRAK
Dalam beberapa tahun terakhir, kemajuan besar telah terjadi pada sistem pengenalan wajah. Banyak model yang telah diusulkan. Pada penelitian ini, uji coba dilakukan dengan model tertentu. Teknik Logarithm Transformation pertama-tama diterapkan untuk meningkatkan kualitas gambar wajah dan mengatasi variasi pencahayaan. Selanjutnya dilakukan proses ekstraksi fitur wajah dari gambar berdasarkan Singular Value Decomposition SVD . Nilai singular diambil sebagai fitur yang diasumsikan merepresentasikan gambar citra wajah. Kemudian, algoritma K-Nearest Neighbors KNN dijalankan untuk proses klasifikasi, sehingga menghasilkan persentase tingkat akurasi program. ORL faces database dipilih untuk menguji model program pengenalan wajah. Dalam penelitian ini, data uji menggunakan hasil ektraksi fitur SVD dibandingkan dengan data uji tanpa ekstraksi fitur. Dari hasil uji coba, diperoleh bahwa penggunaan data uji menggunakan hasil ekstraksi fitur SVD menghasilkan proses running time yang lebih cepat dibandingkan dengan menggunakan data tanpa ekstraksi fitur. Namun persentase tingkat akurasi rata-rata tertinggi yang didapatkan pada setiap iterasi terpilih, lebih baik hasilnya dengan data uji tanpa ektraksi fitur, yaitu sebesar 98,34 pada 90 data training, dibandingkan dengan data uji hasil ektraksi fitur SVD yang memperoleh persentase tingkat akurasi rata-rata sebesar 82,82 pada 90 data training.

ABSTRACT
In the past several years, major advances have occurred in face recognition system. Many models have been proposed. In this paper, the experiments were carried out with a particular model. The Logarithm Transformation LT technique is firstly applied to enhance the face image and handling lighting variations of face image. Furthermore, extract the feature of the face image based on Singular Value Decomposition SVD . The singular value is taken as a feature that is assumed to represent the face image. Then, K Nearest Neighbors KNN algorithm is run for the classification process, so it generates an accuracy of program. ORL database was chosen to test the model of face recognition program. In this research, data using the feature extraction were compared to the data without feature extraction. From the test results, it was found that the use of test data using feature extraction has a faster running time than using data without feature extraction. However, the highest rate of average accuracy that obtained on each chosen iteration, the result is better with the test data without feature extraction, that is 98.34 at 90 data training, compared to the test data using feature extraction which has average accuracy level of 82.82 at 90 of data training."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.

Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yumna Pratista Tastaftian
"Speech Emotion Recognition adalah teknologi yang mampu bisa mendeteksi emosi lewat data suara yang diproses oleh sebuah mesin. Media yang sering digunakan untuk menjadi media interaksi antara 2 orang atau lebih yang saat ini sedang digunakan oleh banyak orang adalah Podcast, dan Talkshow. Seiring berkembangya SER, penelitian terakhir menunjukkan bahwa penggunaan metode Deep Learning dapat memberikan hasil yang memuaskan terhadap sistem SER. Pada penelitian ini akan diimplementasikan model Deep Learning yaitu dengan Recurrent Neural Network (RNN) variasi Long Short Term Memory (LSTM) untuk mengenali 4 kelas emosi (marah, netral, sedih, senang). Penelitian ini menguji model yang digunakan untuk mengenali emosi dari fitur akustik pada data secara sekuensial. Skenario training dan testing dilakukan dengan metode one-against-all dan mendapatkan hasil (1) Dataset talkshow mengungguli dataset podcast untuk tipe 1 dan 2 dan untuk semua emosi yang dibandingkan; (2) Untuk dataset podcast pada emosi marah, senang, dan sedih didapatkan akurasi optimal pada dataset tipe 1 yaitu 67.67%, 71.43%, dan 68,29%, sedangkan untuk emosi netral didapatkan akurasi terbaik pada dataset tipe 2 dengan 77.91%; (3) Untuk dataset talkshow pada emosi marah, netral, dan sedih didapatkan akurasi terbaik pada dataset tipe 2 yaitu 78.13%, 92.0%, dan 100%. Dapat disimpulkan bahwa dataset talkshow secara garis besar memberikan hasil yang lebih optimal namun memiliki variasi data yang lebih sedikit dari dataset podcast. Dari sisi panjang data, pada penelitian ini didapatkan akurasi yang lebih optimum pada dataset dengan tipe 2.

Speech Emotion Recognition is a technology that is able to detect emotions through voice data that is processed by a machine. Media that is often used to be a medium of interaction between two or more people who are currently being used by many people are Podcasts, and Talkshows. As SER develops, recent research shows that the use of the Deep Learning method can provide satisfactory results on the SER system. In this study a Deep Learning model will be implemented, this study uses Long Short Term Memory (LSTM) as one of the variation of Recurrent Neural Network (RNN) to recognize 4 classes of emotions (angry, neutral, sad, happy). This study examines the model used to recognize emotions from acoustic features in sequential data. Training and testing scenarios are conducted using the one-against-all method and get results (1) The talkshow dataset outperforms the podcast dataset for types 1 and 2 and for all emotions compared; (2) For the podcast dataset on angry, happy, and sad emotions, the optimal accuracy in type 1 dataset is 67.67%, 71.43%, and 68.29%, while for neutral emotions the best accuracy is obtained in type 2 dataset with 77.91%; (3) For the talkshow dataset on angry, neutral, and sad emotions the best accuracy is obtained for type 2 datasets, namely 78.13%, 92.0%, and 100%. It can be concluded that the talkshow dataset in general gives more optimal results but has fewer data variations than the podcast dataset. In terms of data length, this study found more optimum accuracy in dataset with type 2."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ozananda Fachristiary Adji
"Tujuan penelitian ini adalah melakukan studi awal guna memprediksi nilai kerma udara dan half value layer (HVL) pesawat CT scan berdasarkan citra fantom homogen. Penelitian ini dilakukan dengan menggunakan citra homogen dari fantom standar CT scan yang dilakukan ekstraksi fitur GLCM (Gray Level Co-occurence Matrix), dengan data tambahan berupa nilai kVp pengambilan citra. Sebagai label output adalah hasil pengukuran kerma udara dan HVL. Model yang digunakan berbasis artificial neural network, dengan hyperparameter ditentukan berdasarkan teknik hyperparameter tuning dengan menggunakan Teknik Gridsearch. Pencarian hyperparameter berupa fungsi aktivasi, jumlah hidden layer, jumlah hidden unit, kernel initializer, dan optimizer dilakukan dengan Analisa performa hasil. Kualitas performa klasifikasi model artificial neural network menggunakan confusion matrix menunjukkan akurasi sebesar 84,4% pada model yang dilatih menggunakan input fitur GLCM, sedangkan pada model artificial neural network yang menggunakan input fitur GLCM dan kVp menunjukkan akurasi sebesar 100%. Hasil ini menunjukkan bahwa fitur GLCM mampu menghasilkan akurasi yang baik untuk melakukan prediksi kerma udara dan HVL. Namun, jika disertai dengan fitur kVp sebagai input, maka proses training akan menghasilkan akurasi yang sangat baik, dengan gejala dominasi fitur kVp terhadap fitur GLCM.

The goals of this research is to do preliminary study to predict air kerma and half value layer (HVL) of CT scan base on phantom image which has homogeneous characteristic. This research starts with GLCM (Gray Level Co-occurence Matrix) feature extraction process from the phantom image, the kVp value also extracted from the phantom image dicom information. While the target during training is air kerma and HVL measurement resulted from the dosimeter and solid state device. Machine learning model used for this research is artificial neural network (ANN) base Machine Learning model. However, the hyperparameter have not yet been found. Thus, this problem could be solved by using Hyperparameter tuning technique, specifically using Gridsearch with variety of activation function, hidden layers, hidden units, kernel initializer, and optimizer as the parameter guideline. The performance of classification model is measured using confusion matrix technique. The classification performance show that the model which trained using GLCM feature only has 84.4% accuracy to predict air kerma and HVL. While, the classification performance show that the model which trained using GLCM feature and kVp that extracted from the dicom information has 100% accuracy to predict air kerma and HVL. Although, the model that train using GLCM feature and kVp can predict much better than the model which trained using GLCM feature only, it shows that GLCM feature is dominated by kVp feature that extracted from the dicom information."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dawud Gede Wicaksono D.
"Skripsi ini dibuat untuk merancang perangkat lunak yang mampu mengenali nilai nominal uang kertas rupiah beserta keasliannya melalui proses pengolahan citra berbasiskan metode jaringan syaraf tiruan dengan algoritma backpropagation. Sistem pengenalan citra (image recognition) ini memperoleh kemampuan deteksi dengan cara belajar dari contoh (learning by examples).
Pola dari tiap uang kertas rupiah memiliki ciri yang unik yang membedakannya satu dengan yang lainnya, baik bentuk angka, jumlah angka nol, serta gambar latar belakangnya. Pola khas dari tiap jenis uang kertas inilah yang dikenali oleh perangkat lunak ini, sehingga mampu membedakan tidak hanya uang kertas rupiah (valid data) tapi juga uang kertas pecahan lain (unknown data).
Pencitraan uang kertas berasal dari dua sumber yakni citra tampak (visible image), yang berasal dari scanner 300 dpi, dan tak tampak (invisible image), yang menggunakan sinar ultraviolet (UV). Beberapa area tertentu diambil dari citra sebagai masukan identifikasi yang akan diolah melalui proses dijitalisasi sehingga dihasilkan reduksi citra hitam-putih (gray-scale) sebesar 8x7 pixel. Hal ini bertujuan selain mengurangi besar data pelatihan jaringan syaraf tiruan (JST) juga meningkatkan kemampuan identifikasi.
Metode backpropagation dipilih didasarkan atas masukan data relatif kecil dengan harapan waktu pendeteksian dapat dipersingkat. Hasil identifikasi mungkin tidak akan mendekati klasifikasi, tetapi akan didekati dengan persentase kesalahan sekecil mungkin. Jumlah total data sebanyak 76 set, dimana 25 diantaranya digunakan untuk melatih JST, dan sisanya sebanyak 51 set digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali dengan tingkat akurasi hingga sebesar 92% bervariasi tergantung dari jumlah set data pelatihan yang dilakukan. Metode yang diterapkan dapat digunakan untuk mengenali uang kertas pecahan rupiah.

This paper is written to design a software that capable to recognize the nominal value of rupiah banknote with its authenticity by means of image-processing technic based on artificial neural network with backpropagation algorithm. This image-processing technic has its recognition ability from learning-by-examples process.
Each rupiah banknote has its unique characteristic which distinguish the banknote with one another, such as numeral shape, amount of zeroes, and its background image. The software then uses this banknote’s unique pattern to recognize not only for valid currency, but also for unknown currency.
The banknote imaging process itself came from two sources, visible image—taken from a 300dpis scanner, and unvisible image—taken from a UV. Some certain areas are taken from the image as identification source that will be processed by some digitalization until these areas become an 8x7 pixels gray-scale image. This is intented to reduce the data size for the artificial neural network training process, thus increase the identification ability.
Backpropagation method is chosen based on its input data which is relatively small, hoping that the detection time can be decreased. The identification result might not get closer with the classification result, but will get approached with as small error as possible. The total amount of data are 76 sets, where 25 of them are used to train the artificial neural network, and the rest of them are used to test the neural network. Simulation result shows that the sistem is capable to identify up to 92% of accuracy, depends on amount of train-sets data. This method can be used to identify the rupiahs banknote authenticity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40552
UI - Skripsi Open  Universitas Indonesia Library
cover
"Tugas akhir ini bertujuan untuk membuat sistem pengenal huruf tulisan tangan dengan menggunakan algoritma Backpropagation Neural Network. Untuk mendapatkan representasi huruf dari bentuk tulisan tangan pada sub-sistem ekstraksi ciri digunakan metode Freeman chain code dan pryeksi sumbu sehingga akan dihasilkan rangkaian kode kerangka citra tulisan huruf. Proses penghalusan dan penipisan citra dilakukan dengan algoritma klasik pada sub-sistem pra_pengolahan. Pengujian menghasilkan tingkat keberhasilan rata-rata 92,31% untuk citra huruf A?Z, 76,92% untuk citra huruf a?z dan 90% untuk citra angka 0-9."
Fakultas Teknik Universitas Indonesia, 2002
S39079
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yodi Deza
"Peran transformasi wavelet dalam bidang kompresi dan pengkodean citra telah sangat dikenal dan telah menghasilkan standar format citra digital. Dengan konsep multiskala dan multiresolusi, sebuah citra dapat memberikan representasi yang informatif dengan titur-fitur yang ada. Fitur-fitur ini dapat dimanfaat untuk sebuah sistem pengenalan citra. Jaringan syaraf tiruan sebagai pengklasifikasi telah digunakan secara umum dengan tujuan pengenalan terhadap suatu objek ataupun fungsi. Kelebihan yang dimilikinya karena penggunakan metode training. Training dilakukan terhadap sekumpulan training set yang representatif untuk dapat melakukan proses klasifikasi terhadap objek yang akan dikenali. Skripsi bertujuan untuk memanfaatkan kemampuan transformasi wavelet untuk ekstraksi fitur dengan pengklasifikasi jaringan syaraf tiruan. Penerapannya dilakukan terhadap citra tekstur yang memiliki pola teratur. Pengambilan fitur-fiturnya menggunakan wavelet histogram signazures yang memperlihatkan fitur-fitur wavelet dalam karakteristik statistik orde pertama. Percobaan dilakukan dengan sebuah simulasi software pengenalan pola yang dibuat dengan MATLAB. Sistem dibuat berdasarkan transformasi wavelet dan jaringan syaraf tiruan. Hasil dari percobaan adalah berapa persen jumlah keberhasilan pengenalan sistem terhadap objek pengujian yang diberikan. Pengujian juga dilakukan terhadap tekstur yang diberi gangguan (noise)."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39977
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>