Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127613 dokumen yang sesuai dengan query
cover
Yolanda Rahmi Safitri
"ABSTRAK

Peramalan tingkat mortalitas sangat dibutuhkan oleh perusahaan asuransi pada perencanaan kebijakan dalam penentuan premi untuk mengurangi risiko kerugian di masa mendatang. Dalam tesis ini, model Cairns-Blake-Dowd (CBD) digunakan untuk meramalkan tingkat mortalitas di Indonesia. Model CBD memuat dua parameter runtun waktu. Parameter-parameter dari model CBD diestimasi dengan menggunakan metode Least Square. Kemudian, peramalan parameter model CBD untuk beberapa periode ke depan dilakukan dengan menggunakan metode Bivariate Random Walk with Drift. Hasil dari peramalan parameter ini disubstitusi ke model CBD untuk mendapatkan tingkat mortalitas di Indonesia dalam beberapa periode ke depan. Keakuratan dari hasil estimasi dan peramalan diukur dengan menggunakan Mean Squared Error (MSE).


ABSTRACT


Forecasting mortality rates is needed by insurance companies in policy planning to determine premiums to reduce the risk of losses in the future. In this thesis, the Cairns-Blake-Dowd (CBD) model is used to forecast Indonesian mortality rates.  The CBD model contains two-time series parameters. The CBD model`s parameters are estimated by using the Least Square method. Then, parameters prediction for the next few periods used the Bivariate Random Walk with Drift method. The results of parameters prediction will be substituted to the CBD model to obtain Indonesian mortality rates for the next few periods. The accuracy of the estimation and forecasting results are measured by using Mean Squared Error (MSE).

"
2019
T53954
UI - Tesis Membership  Universitas Indonesia Library
cover
Clarissa Nethania
"Tingkat mortalitas merupakan komponen penting dalam analisis kesehatan masyarakat yang diperlukan oleh banyak institusi seperti pemerintah, organisasi kesehatan, hingga perusahaan asuransi. Akan tetapi, data tingkat mortalitas merupakan data yang terus berubah seiring berjalannya waktu sehingga dibutuhkan peramalan tingkat mortalitas. Untuk melakukan peramalan tingkat mortalitas, diperlukan kesesuaian dari berbagai metode dan model untuk dapat memaksimalkan tingkat akurasi dari nilai hasil ramalan. Untuk mencapai hal tersebut, skripsi ini melakukan simulasi peramalan dengan model Cairns-Blake-Dowd (CBD) yang diaplikasikan terhadap data Tingkat Mortalitas Indonesia untuk jenis kelamin laki-laki yang bersifat tahunan. Model CBD sendiri memiliki dua parameter yang diestimasi menggunakan metode Least Square. Lalu, dikarenakan sifat parameter yang merupakan deret waktu multivariat, akan digunakan metode peramalan berupa Vector Autoregressive Integrated Moving Average (VARIMA). Hasil ramalan tersebut kemudian disubstitusikan kembali ke dalam model CBD untuk mendapatkan nilai tingkat mortalitas pada tahun-tahun berikutnya. Dalam menentukan akurasi hasil peramalan dari metode VARIMA dan estimasi parameter dari metode Least Square tersebut, digunakan metode Mean Squared Error (MSE).

Mortality rate is a crucial component in the analysis of public health which is required by various institutions such as the government, health organizations, and insurance companies. However, mortality rate data is constantly changing over time, necessitating the forecasting of mortality rates. Therefore, to forecast mortality rates, the alignment of various methods and models is necessary to maximize the accuracy of the forecasted values. To achieve this, this thesis will conduct a forecasting simulation using the Cairns-Blake-Dowd (CBD) model applied to Indonesian Mortality Rate data for males on an annual basis. The CBD model itself has two parameters to be estimated using the Least Square method. Then, due to the nature of the parameters as a multivariate time series, the Vector Autoregressive Integrated Moving Average (VARIMA) forecasting method will be employed. The forecasted results will be substituted back into the CBD model to obtain mortality rate values for the upcoming years. In determining the accuracy of the forecasting results from VARIMA and estimation from Least Square, the Mean Squared Error (MSE) method will be utilized."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Al Kafi
"Populasi di Indonesia selalu mengalami perubahan dari tahun ke tahun karena peningkatan dan penurunan tingkat mortalitas yang berkelanjutan. Teori untuk meramalkan dan menganalisis tingkat mortalitas telah menarik minat perusahaan-perusahaan asuransi jiwa. Jika informasi tentang tingkat mortalitas nasabah untuk beberapa tahun kedepan dapat diperoleh di masa sekarang, maka perencanaan keuangan dan kebijakan dalam menentukan besarnya premi yang harus dibayarkan oleh nasabah kepada perusahaan asuransi tersebut akan lebih baik dan terarah. Tesis ini mengusulkan model Cairns-Blake-Dowd (CBD) untuk meramalkan tingkat mortalitas penduduk di Indonesia berdasarkan jenis kelamin. Model CBD memuat dua parameter yang bergantung waktu. Tahap pertama adalah menggunakan metode Least Square untuk mengestimasi nilai dari parameter-parameter pada model CBD. Pada tahap kedua, nilai dari parameter-parameter yang diperoleh dari tahap pertama diproyeksikan untuk empat periode kedepan menggunakan metode Holts Linear Trend. Kemudian nilai proyeksi dari parameter-parameter yang diperoleh dari tahap kedua digunakan untuk menghitung nilai ramalan dari tingkat mortalitas untuk empat periode kedepan menggunakan model CBD. Keakuratan dari hasil simulasi numerik yang dilakukan pada tahap pertama dan kedua diverifikasi oleh Mean Absolute Error (MAE).

The population of Indonesia always changes from year to year due to continuous increase and decrease in mortality rates. The theory of predicting and analyzing mortality rates has attracted the interest of life insurance companies. If information about the mortality rates of a customer for the next few periods can be obtained in the present, then the financial planning and policy in determining the amount of premium that must be paid by a customer to the insurance company are expected to be better and more directed. This thesis proposes the Cairns-Blake-Dowd (CBD) model to forecast the mortality rates of Indonesia population based on gender. The CBD model contains two time-dependent parameters. The first stage is to use the Least Square method to estimate these parameters. In the second stage, the parameters obtained from the first stage are projected for the next four periods using Holts Linear Trend method. Then the projection parameters obtained from the second stage are used to calculate the mortality rates for the next four periods using the CBD model. The accuracy of the numerical simulation results carried out in the first and second stages is verified by the Mean Absolute Error (MAE)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rimbun Budiman
"Data Panel merupakan kombinasi dua jenis data yaitu data cross section dan data time series. Tujuan dari penulisan tugas akhir ini adalah mencari taksiran parameter pada model regresi untuk data panel yang tidak lengkap (incomplete panel data regression models) dengan komponen error satu arah (one-way error component). Selain itu model regresi tersebut merupakan random effect models, yang berarti perbedaan karakteristik individu dan waktu diakomodasikan pada komponen error dari model.
Metode yang digunakan untuk menaksir parameter adalah metode Feasible Generalized Least Squares (FGLS). Pada metode tersebut, matriks kovarians error tidak diketahui, sehingga perlu dilakukan penaksiran terhadap komponen variansi yang terdapat pada matriks kovarians error tersebut. Metode yang digunakan untuk menaksir komponen variansi adalah modifikasi metode penaksiran ANOVA yang diusulkan oleh Wallace dan Hussain."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rania Azzahra
"Pandemi Covid-19 mengakibatkan adanya perubahan pada gaya hidup masyarakat. Aktivitas-aktivitas yang biasanya dilakukan secara offline berubah menjadi online. Hal ini memberikan dampak negatif terhadap tubuh seperti badan menjadi tidak fit, imun tubuh turun, dan lainnya. Maka dari itu, masyarakat termasuk mahasiswa dihimbau untuk tetap menjaga kesehatan mereka salah satunya dengan berolahraga secara rutin. Sehingga seeorang harus memiliki motivasi olahraga yang baik. Tujuan dari penelitian ini, yaitu: (1) menganalisis variabel-variabel yang memengaruhi tingkat motivasi olahraga pada mahasiswa Universitas Indonesia; (2) menganalisis pengaruh social support terhadap hubungan physical self-concept dengan motivasi olahraga; (3) menganalisis pengaruh kecemasan terhadap Covid-19 terhadap hubungan health consciousness dengan motivasi olahraga, yang dilakukan dengan menggunakan metode Partial Least Square (PLS). Data yang digunakan merupakan data primer yang diambil dengan menggunakan metode purposive sampling sejumlah 876 mahasiswa S1 Universitas Indonesia angkatan 2018, 2019, 2020, dan 2021 tahun ajar 2021/2022 dengan status akademis aktif yang bersedia mengisi kuesioner. Hasil penelitian menunjukkan bahwa variabel jenis kelamin, ketersediaan fasilitas olahraga, health consciousness, dan physical self-concept mempengaruhi motivasi olahraga pada mahasiswa Universitas Indonesia. Social support merupakan variabel prediktor moderasi antara physical self-concept dengan motivasi olahraga. Selain itu, kecemasan terhadap Covid-19 merupakan variabel prediktor moderasi antara health consicousness dengan motivasi olahraga.

COVID-19 pandemic has changed people's lifestyles. Activities that are usually done offline turn into online. This has negative impact on the body such as the body becomes unfit, the body's immune system decreases, and so on. Therefore, the public, including students, are encouraged to maintain their health by exercising regularly. So, a person must have good exercise motivation. The aims of this study are to analyze the variables that affect the level of sports motivation in University of Indonesia students, to analyze the effect of anxiety on Covid-19 on the relationship between health consciousness and sports motivation, and to analyze the effect of social support on the relationship of physical self-concept to sports motivation by using the Partial Least Square (PLS) method. The data used is primary data taken using purposive sampling with a total of 876 undergraduate students at the University of Indonesia. The results showed that gender, availability of sports facilities, health consciousness, and physical self-concept have significant effect on sports motivation. Social support only acts as a moderating predictor variable between physical self-concept and sports motivation. In addition, it was found that anxiety about Covid-19 only acts as moderating predictor variable between health consciousness and exercise motivation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erma Harviani
"Dalam penerapan analisis regresi seringkali terdapat efek dependensi spasial (lokasi) yaitu nilai observasi variabel dependen pada suatu lokasi bergantung pada nilai observasi di lokasi lain. Karateristik ini dinamakan spasial lag. Bentuk dependensi lain adalah spasial error yaitu error pada suatu lokasi dipengaruhi oleh error pada lokasi sekitarnya. Model regresi yang melibatkan efek dependensi spasial disebut model spasial dependen. Dalam kenyataannya tidak tertutup kemungkinan spasial dependen pada data cross section memiliki kedua kararateristik dependensi spasial. Tugas akhir ini membahas tentang prosedur mengestimasi parameter model dengan kedua jenis spasial dependen, yaitu spasial lag sekaligus spasial error dengan metode Generalized Spatial Two Stage Least Squares (GS2SLS). Metode ini menggunakan Two Stage Least Squares, Generalized Moment, dan transformasi Cochrane-Orcutt. Taksiran yang dihasilkan bersifat konsisten. Kata Kunci: Spasial Lag, Spasial Error, Two Stage Least Squares, Generalized Moment, Transformasi Cochrane-Orcutt."
Depok: Universitas Indonesia, 2008
S27774
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahmat Febriyanto
"ABSTRACT
Model Generalized Space Time Autoregressive adalah suatu model spatio temporal yang merupakan pengembangan model Space Time Autoregressive (STAR). Model STAR adalah model spatio temporal dengan asumsi parameter-parameter sama untuk setiap lokasi. Model GSTAR dibentuk sebagai pengembangan dari model STAR yang memungkinan untuk mengestimasi parameter yang berbeda untuk setiap lokasinya. Borovkova, Lopuhaa dan Ruchjana (2002) mengembangkan model Generelized Space Time Autoregressive (GSTAR) dimana paramater-parameter pada model, berbeda untuk setiap lokasi. Metode kuadrat terkecil (least square method) digunakan untuk mengestimasi parameter pada model GSTAR. Metode kuadrat terkecil merupakan metode pendugaan parameter yang meminimumkan jumlah kuadrat error. Penggunaan model GSTAR pada data penyakit Hepatitis A di 5 kotamadya DKI Jakarta pada tahun 2011-2017 menghasilkan model GSTAR(4,1) sebagai model yang dipilih.

ABSTRACT
Generalized Space Time Autoregressive(GSTAR) model is a spatio temporal model which is the development of the Space Time Autoregressive (STAR) model. The STAR model is a spatio temporal model assuming the same parameters for each location. The GSTAR model was formed as a development of the STAR model which makes it possible to estimate different parameters for each location. Borovkova, Lopuhaa and Ruchjana (2002) developed the Generelized Space Time Autoregressive (GSTAR) model where parameters in the model differ for each location. The least square method is used to estimate the parameters in the GSTAR model. The least squares method is a parameter estimation method that minimizes the number of squared errors. The use of the GSTAR model on Hepatitis A data in 5 DKI Jakarta municipalities in 2011-2017 produced the GSTAR (4.1) model as the chosen model."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Marshal Arijona
"Tugas Akhir ini menelaah least square adversarial autoencoder yang menggunakan least square generative adversarial network sebagai diskriminatornya. Diskriminator tersebut meminimalkan fungsi Pearson χ 2 divergence antara distribusi variabel laten dan suatu distribusi apriori. Adanya diskriminator memungkinkan autoencoder untuk membangkitkan data yang memiliki karakteristik yang menyerupai sampel pembelajarannya. Penelitian ini dilakukan dengan membuat program yang memodelkan least square adversarial autoencoder. Program memodelkan dua jenis autoencoder yaitu unsupervised least square adversarial autoencoder dan supervised least square adversarial autoencoder dengan memanfaatkan dataset MNIST dan FashionMNIST. Unsupervised least square adversarial autoencoder menggunakan variabel laten berdimensi 20 sementara supervised least square adversarial autoencoder menggunakan variabel laten masing-masing berdimensi 2, 3, 4, dan 5. Program diimplementasikan menggunakan framework PyTorch dan dieksekusi menggunakan Jupyter Notebook. Seluruh aktivitas pemrograman dilakukan pada environment cloud yang disediakan oleh Floydhub dan Tokopedia-UI AI Center yang masing-masing menggunakan GPU NVIDIA Tesla K80 dan NVIDIA Tesla V100 sebagai perangkat komputasinya. Proses pembelajaran pada unsupervised least square adversarial autoencoder berlangsung selama dua jam sementara pada supervised least square adversarial autoencoder berlangsung selama enam jam. Berdasarkan hasil eksperimen, nilai mean squared error unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 0.0063 dan 0.0094. Sementara itu, nilai mean squared error supervised least square adversarial autoencoder pada dataset MNIST sebesar 0.0033. Selanjutnya, nilai Frechet Inception Distance unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 15.7182 dan 38.6967. Sementara itu, nilai Frechet Inception Distance supervised least square adversarial autoencoder pada dataset MNIST sebesar 62.512. Hasil tersebut menunjukkan bahwa least square adversarial autoencoder mampu merekonstruksi citra dengan baik, namun kurang mampu membangkitkan citra dengan kualitas sebaik sampel pembelajarannya.

This Final Project (Tugas Akhir) investigates the least square adversarial autoencoder that uses least square generative adversarial network as its discriminator. The discriminator minimizes the Pearson χ 2 divergence between the latent variable distribution and the prior distribution. The presence of discriminator allows the autoencoder to generate data that has characteristics that resemble the original data. Python programs were developed to model the least square adversarial autoencoder. This programs try to model two types of autoencoder namely unsupervised least square adversarial autoencoder and supervised least square adversarial autoencoder by utilizing MNIST dataset and FashionMNIST dataset. The unsupervised least square adversarial autoencoder uses latent variables of dimension 20 while the supervised least square adversarial autoencoder uses latent variables with dimensions of 2, 3, 4, and 5, respectively. This programs were implemented using PyTorch and executed using Jupyter Notebook. All of the programming activities are carried out in the cloud environment provided by Floydhub and Tokopedia-UI AI Center, respectively using NVIDIA Tesla K80 GPU and NVIDIA Tesla V100 GPU as their computing resource. Training time in unsupervised least square adversarial autoencoder lasts for two hours while in supervised least square adversarial autoencoder lasts for six hours. The Results of experiments show that the mean squared error of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 0.0063 and 0.0094, respectively. Meanwhile, the mean squared error of supervised least square adversarial autoencoder for MNIST dataset is 0.0033. Furthermore, the Frechet Inception Distance scores of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 15.7182 and 38.6967, respectively. Meanwhile, the value of Frechet Inception Distance score of supervised least square adversarial autoencoder in MNIST dataset is 62.512. These results indicate that the least square adversarial autoencoder is able to reconstruct the image properly, but is less able to generate images with the same quality as the learning sample."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ekavanya Utami Widodo
"Setiap orang akan melewati fase-fase kehidupan mulai dari kanak-kanak, remaja hingga dewasa. Fase transisi dari remaja menuju dewasa disebut fase dewasa awal, di mana terjadi pada mahasiswa yang transisi sekolah menuju tingkat lebih tinggi seperti universitas. Pada fase ini, individu akan mengalami perkembangan fisik dan emosional. Kondisi kematangan emosi tidak terlepas dari berbagai pengaruh, seperti lingkungan, sekolah, keluarga, interaksi sosial dan aktivitas sehari-harinya. Penelitian ini dilakukan untuk melihat faktor apa saja yang dapat menjelaskan tingkat kematangan emosi mahasiswa. Metode yang digunakan adalah Partial Least Square (PLS) untuk menganalisis kausalitas tersebut. Kemudian akan digunakan metode analisis korespondensi berganda untuk melihat profil tingkat kematangan emosi mahasiswa berdasarkan variabel-variabel yang signifikan. Penelitian ini menemukan bahwa variabel yang menjelaskan tingkat kematangan emosi adalah parental demandingness, parental responsiveness, keaktifan dalam organisasi, religiusitas, jenis kelamin, usia dan status pernikahan orang tua. Penelitian ini juga menemukan profil mahasiswa yang memiliki tingkat kematangan emosi yang tinggi, yaitu berjenis kelamin perempuan, berusia 21‒23 tahun, memiliki tingkat religiusitas yang tinggi, aktif dalam organisasi, memiliki pola asuh orang tua tipe permisif, dan dengan kondisi salah satu atau kedua orang tua meninggal dunia serta yang menikah dan masih bersama. Profil mahasiswa yang memiliki tingkat kematangan emosi yang rendah, yaitu berjenis kelamin laki-laki, berusia 18-20 tahun, tingkat religiusitas rendah, tidak aktif dalam organisasi, serta memiliki pola asuh orang tua tipe otoriatif dan dengan kondisi orang tua menikah dan masih bersama.

Every individual goes through phases of life, starting from childhood, adolescence, and into adulthood. The transitional phase from adolescence to adulthood is referred to as early adulthood, which occurs in students transitioning from school to higher levels such as university. During this phase, individuals undergo development, both in terms of physical maturation and emotional maturation. The state of emotional maturity is influenced by various factors, such as the environment, school, family, social interactions, and daily activities. This research was conducted to examine the factors that can explain the level of emotional maturity among students. The method used is Partial Least Square (PLS) to analyze the causality between these variables. Furthermore, the multiple correspondence analysis method will be employed to examine the profiles of students' emotional maturity levels based on significant variables. The research findings indicate that the variables explaining the level of emotional maturity are parental demandingness, parental responsiveness, involvement in organizations, religiosity, gender, age, and parental marital status. The research also identified profiles of students who exhibit high levels of emotional maturity, namely female gender, aged 21‒23 years, high level of religiosity, active participation in organizations, permissive parenting style, and experiencing the death of one or both parents, also parents who are married and still together. On the other hand, the profiles of students with low levels of emotional maturity include male gender, aged 18‒20 years, low level of religiosity, inactivity in organizations, authoritarian parenting style, and parents who are married and still together."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqa Fatika Fajrianti
"Prinsip parsimoni adalah prinsip yang menyatakan bahwa jika terdapat beberapa penjelasan untuk suatu fenomena, maka penjelasan paling sederhanalah yang harus dipilih. Prinsip ini digunakan dalam analisis data untuk memilih model yang paling efisien dalam menjelaskan variabilitas data dengan parameter seminimal mungkin. Namun pada beberapa kondisi, data bisa saja melibatkan pengukuran atau variabel yang cukup banyak. Data berdimensi tinggi dapat menyebabkan kompleksitas dan kesulitan dalam analisis, sehingga reduksi dimensi pada data penting untuk dilakukan. Principal Component Analysis (PCA) adalah salah satu metode yang dapat digunakan untuk melakukan reduksi dimensi, dengan mengekstraksi variabel baru dan mengurangi pengaruh dari variabel yang tidak relevan. Namun, metode PCA tidak toleran terhadap missing value, sehingga algoritma Nonlinear Iterative Partial Least Squares (NIPALS) dapat digunakan dalam mengatasi data yang mengandung missing value. Performa dari algoritma NIPALS dievaluasi menggunakan nilai normalized root mean square error (NRMSE) dan koefisien korelasi Pearson. Kemudian, performa dari algoritma ini dibandingkan dengan dua metode lain, meliputi Probabilistic Principal Component Analysis (PPCA) dan SVDImpute. Setelah dilakukan percobaan sebanyak seratus kali pada data survei COVIDiSTRESS, didapatkan hasil bahwa algoritma NIPALS memiliki performa yang lebih baik dan stabil dalam melakukan reduksi dimensi dibandingkan SVDImpute dan PPCA pada data dengan missing value sebesar 1% hingga 15%.

The principle of parsimony, states that if there are multiple explanations for a phenomenon, the simplest explanation should be chosen. This principle is applied in data analysis to select the most efficient model that explains the variability of the data with minimal parameters. However, in some cases, the data may involve a large number of measurements or variables. High-dimensional data can lead to complexity and difficulties in analysis, therefore dimensionality reduction is important. Principal Component Analysis (PCA) is one method that can be used for dimensionality reduction by extracting new variables and reducing the influence of irrelevant variables. However, PCA is not tolerant to missing values, so the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm can be used to handle data with missing values. The performance of the NIPALS algorithm is evaluated using the normalized root mean square error (NRMSE) and Pearson correlation coefficient. Subsequently, the performance of this algorithm is compared with two other methods, including Probabilistic Principal Component Analysis (PPCA) and SVDImpute. After conducting a hundred trials on the COVIDiSTRESS survey data, it was found that the NIPALS algorithm performed better and was more stable in dimension reduction compared to SVDImpute and PPCA algorithms on data with missing values ranging from 1% to 15%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>