Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146784 dokumen yang sesuai dengan query
cover
Nadisa Karina Putri
"Diabetes mellitus atau biasa disebut sebagai diabetes adalah penyakit metabolik yang disebabkan oleh penderita memiliki kadar gula darah yang tinggi dan organ pankreas tidak dapat memproduksi hormon insulin secara efektif. Diabetes dapat mengakibatkan penyakit yang lebih parah seperti kebutaan, gagal ginjal, dan penyakit jantung. Oleh karena itu, pendeteksian sejak dini dibutuhkan agar pasien dapat mencegah penyakitnya sebelum menjadi lebih parah. Karena data medis biasanya berukuran besar dan tidak berdistribusi normal, beberapa peneliti menggunakan metode klasifikasi untuk memprediksi gejala penyakit atau mendiagnosa penyakit. Pada penelitian ini, digunakan algoritma Learning Vector Quantization (LVQ) untuk klasifikasi data set diabetes dengan seleksi fitur Chi-Square. Pada penelitian ini digunakan dua data set diabetes yaitu data set I dengan 8 fitur dan data set II dengan 19 fitur. Hasil dari penelitian ini menunjukkan bahwa untuk data set dengan 8 fitur, akurasi dan performa model tertinggi diperoleh ketika data set mengandung hampir seluruh fiturnya yaitu 7 fitur dengan akurasi sebesar 76,55%. Sedangkan untuk data set dengan 19 fitur, akurasi dan performa model tertinggi diperoleh ketika data set telah melewati proses seleksi fitur dengan menggunakan metode Chi-Square yaitu pada model dengan 10 fitur dengan akurasi sebesar 78,96%.

Diabetes mellitus or commonly referred as diabetes is a metabolic disorder caused by high blood sugar level and the pancreas that does not produce insulin effectively. Diabetes can lead to more relentless disease such as blindness, kidney failure, and heart attacks. Therefore, early detection is needed in order for the patients to prevent the disease for being more severe. According to the non-normality and huge size of data in medical field, some researchers use classification methods to predict symptoms or diagnose patients. In this study, Learning Vector Quantization (LVQ) is used to classify the diabetes data set with Chi-Square Feature Selection. This study adopted two kinds of diabetes data set which are, data set I that contains 8 features and data set II that contains 19 features. The result of the experience shows that for data set I, the highest accuracy and model performance is achieved when the model contains most of its features which is the model that contains 7 features with 76,55% of accuracy. Moreover, for data set II, the highest accuracy and model performance is achieved when the model contains features that has been selected with the Chi-Square feature selection which is the model with 10 features and the accuracy achieved is 78,96%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Qomariah Abdillah
"Perkembangan teknologi informasi dan komunikasi saat ini menciptakan ketergantungan manusia terhadap teknologi dan internet, salah satunya melalui penggunaan jaringan Wi-Fi. Konektivitas Wi-Fi berkaitan erat dengan Internet of Things (IoT) karena dapat memfasilitasi perangkat IoT untuk saling terhubung dan terkoneksi ke jaringan internet. Namun, peningkatan penggunaan Wi-Fi publik maupun privat rentan terhadap serangan siber. Badan Sandi dan Siber Negara memperkirakan tahun 2024 akan muncul ancaman seperti IoT attacks, distributed denial of services (DDOS), phishing, dan lainnya. Oleh karena itu, perlu adanya upaya antisipatif untuk mengatasi serangan siber. Salah satu upayanya adalah menerapkan intrusion detection system (IDS) untuk memantau lalu lintas jaringan dan memberikan peringatan jika terdapat serangan. Peningkatan kemampuan deteksi IDS dapat dilakukan dengan menerapkan metode machine learning yang mampu mempelajari pola serangan secara efektif dan akurat. Pada penelitian skripsi ini diterapkan metode klasifikasi Support Vector Machine (SVM) Multiclass dengan pendekatan one-vs-one dan one-vs-rest pada dataset Aegean Wi-Fi Intrusion Detection System (AWID2) yang terdiri dari empat kelas dan memiliki dimensi data yang tinggi, yaitu 154 dimensi (fitur). Dalam mengatasi masalah dimensi tinggi tersebut dilakukan seleksi fitur yang bertujuan untuk menghilangkan fitur yang tidak relevan, sehingga fitur hanya terkonsentrasi pada fitur- fitur yang relevan dan informatif dalam menggambarkan serangan. Penelitian skripsi ini menggunakan metode Chi-square dan Information Gain Ratio. Hasil penelitian skripsi ini menunjukkan metode seleksi fitur Chi-square dengan klasifikasi SVM One Vs Rest pada kernel polynomial dengan memilih 54 fitur tertinggi merupakan model terbaik dalam mengklasifikasikan serangan siber pada Wi-Fi dengan nilai accuracy = 98,03%, Precision = 87,24%, Recall = 99,30%, dan F1 score = 91,90%.

Today's advances in information and communication technology create human dependence on technology and the Internet, one of which is through the use of Wi-Fi networks. Wi-fi connectivity is closely related to the Internet of Things (IoT) because it can facilitate IoT devices to interconnect and be connected to the internet network. However, increased use of public and private Wi-FI is vulnerable to cyber attacks. The National Password and Cyber Agency predicts that threats such as IoT attacks, Distributed Denial of Services, phishing, and more will emerge in 2024. Therefore, there is a need for pre-emptive efforts to deal with cyberattacks. One attempt is to implement the Intrusion Detection System (IDS) to monitor network traffic and give warning if there is an attack. Improved IDS detection capabilities can be achieved by applying machine learning methods that can learn patterns of attack effectively and accurately. In this study, the multi-class Support Vector Machine (SVM) classification method was applied to the Aegean Wi-Fi Intrusion Detection System (AWID2) dataset, which consists of four classes and has a high data dimension, namely 154 dimensions. In addressing the high dimension problem, a feature selection was carried out aimed at eliminating irrelevant features, so that the features were concentrated only on the features that are relevant and informative in describing the attack. This study of the script uses the Chi-square method and Information Gain Ratio. The results of this study show that the method of selection of the feature Chi-square with SVM One vs Rest classification on the polynomial kernel by choosing the 54 highest features is the best model in classifying cyber attacks on Wi-Fi with accuracy values = 98.03%, Precision = 87.24%, Recall = 99.30%, and F1 score = 91.90%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahra Rubena Putri
"Meningkatnya jumlah pengguna internet saat ini memberikan banyak dampak pada kehidupan manusia, karena internet menghubungkan banyak perangkat setiap hari. Perkembangan ini membawa berbagai dampak positif maupun dampak negatif. Salah satu dampak negatifnya adalah adanya aktivitas berbahaya yang dapat menyerang jaringan. Intrusion detection system merupakan sebuah sistem manajemen keamanan pada jaringan komputer. Data yang dimiliki intrusion detection system mempunyai fitur yang cukup banyak tetapi tidak semua fitur yang ada relevan dengan data yang digunakan dan jika data tersebut diolah akan memakan waktu yang cukup lama. Oleh karena itu, diperlukan pemilihan fitur untuk meningkatkan akurasi serta memperpendek waktu pembelajaran.
Beberapa metode pembelajaran sudah pernah diterapkan untuk menyelesaikan masalah intrusion detection system, seperti Na ? ve Bayes, Decision Tree, Support Vector Machines dan Neuro-Fuzzy Methods. Metode pemilihan fitur yang digunakan untuk skripsi ini adalah metode Chi-Square. Setelah dilakukan pemilihan fitur, akan didapatkan hasil berupa sebuah dataset baru yang kemudian akan diklasifikasi menggunakan metode Extreme Learning Machines. Hasilnya menunjukkan setelah dilakukan pemilihan fitur dengan metode Chi-Square, tingkat akurasi akan meningkat serta waktu yang dibutuhkan algoritma pembelajaran untuk menyelesaikan metode tersebut menjadi semakin singkat.

The increasing rates of internet users nowadays must be give much impacts to our lifes, because the internet things can connect more devices every day. This growth carriers several benefits as well as can attack the network. Intrusion detection system IDS are used as security management system. IDS can be used to detect suspicious activity or alert the system. IDS involves large number of data sets with several different features but not all features are relevant with the data sets and it takes long computational time to solve IDS data sets. Therefore, it has to do feature selection to remove the irrelevant features, to increase the accuracy and to shorten the computational time for the learning methods.
Many researches about learning method to solve intrusion detection system problem have been done to develop and test the best model from various classifiers, such as Na ve Bayes, Decision Tree, Support Vector Machines, and Neuro Fuzzy Methods. For this thesis, the feature selection methods will be used is Chi Square methods to reduce dimentionality of IDS data sets. The new IDS data sets with the best selected features are obtained afterwards, and then these new data sets will be classified with Extreme Learning Machines methods. The result denotes that Extreme Learning Machines classification methods provides better accuracy level while combined with Chi Square feature selection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Egira Adhani Khairunnisa
"

Saat ini tidak ada keraguan bagi siswa-siswi sekolah menengah untuk melanjutkan pendidikannya ke jenjang universitas. Namun, transisi dari sekolah menengah ke pendidikan tinggi adalah tantangan besar bagi mahasiswa tahun pertama. Kinerja mahasiswa pada tahun pertama cenderung menentukan kinerja mahasiswa tersebut di tahun-tahun akademik berikutnya. Penting untuk mencari karakteristik-karakteristik mahasiswa berdasarkan kinerjanya pada awal tahun semester akademik, sehingga dapat dilakukan pendeteksian awal untuk mencegah penurunan kinerja dan meningkatkan prestasi akademik mahasiswa. Penelitian ini bertujuan untuk mengelompokkan 140 mahasiswa semester pertama. Fitur-fitur diseleksi menggunakan Chi-Square lalu digunakan Fuzzy C-Means clustering untuk mengelompokkan mahasiswa. Dari hasil simulasi, mahasiswa dikelompokkan ke dalam dua cluster dengan kinerja cluster kedua lebih baik dibanding kinerja cluster pertama.


Currently there is no doubt for high school students to continue their education at the university level. However, the transition from high school to university is a major challenge for the first-year students. Moreover, student performance during the first year tends to determine their performance in the following academic years. It is important to find student's characteristics based on their performance at the beginning of the academic semester so that early detection can be done to prevent performance degradation and increase student academic achievement. This study aims to cluster 140 first year students. Features are selected using the Chi-Square feature selection method and then using Fuzzy C-Means clustering to group the students. From simulation result, students are grouped into two clusters with the second cluster's performance is better than the first cluster's performance.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nedya Shandri
"Penyakit kronis adalah penyakit yang diderita dalam waktu panjang dan dapat berkembang secara cepat, salah satunya adalah penyakit kanker dan diabetes. Oleh karena itu, dengan melakukan pendeteksian dini maka perkembangan penyakit kanker dan diabetes akan menurun. Salah satu cara pendektesian dini dapat dilakukan oleh machine learning. Teknik machine learning banyak digunakan dalam berbagai bidang khususnya untuk analisa data medis.  Clustering merupakan salah satu metode dari machine learning yang bertujuan untuk mengelompokkan suatu dataset ke dalam subset berdasarkan ukuran jarak. Salah satu contoh metode clustering adalah metode Entropi Fuzzy C-Means yang dapat mengidentifikasi entropi disetiap titik data dan memilih pusat kluster terdekat dengan entropi minimum. Pada penelitian akan digunakan data kanker dan diabetes dari UCI Repository dengan menggunakan metode Entropi Fuzzy C-Means yang akan dimodifikasi dengan kernel RBF. Sebelum dilakukan klasifikasi, dilakukan pemilihan fitur menggunakan Chi-Square. Tujuan dari penelitian ini adalah untuk mendapatkan fitur-fitur yang optimal dan mengetahui hasil akurasi menggunakan untuk klasifikasi data diabetes dan kanker. Diperoleh hasil akurasi tertinggi pada klasifikasi data medis menggunakan metode Entropi Fuzzy C-Means berbasis kernel dengan pemilihan fitur Chi-Square yaitu sebesar 83.33% untuk data diabetes dan 77.77-100% untuk data kanker.

Chronic disease is a disease that occur for a long time and can develop quickly, one of them is cancer and diabetes. The early detection is very helpful to reduce the development of the disease. One of the ways to detect cancer and diabetes disease is using machine learning technic. Machine learning technic is widely use in many aspects especially in medical data analysis. Clustering is part of machine learning technic that is used to group a dataset into subset based on space size. Entropy Fuzzy C-Means is one of the methods which can identify entropy in every data and can choose the cluster center similar with minimum entropy. In this paper we will use cancer and diabetes medical data from UCI Repository using Entropy Fuzzy C-Means method which is modified by kernel RBF. Before classification, we will select the feature using Chi-Square  to get the optimal subset feature. The purpose of this study was to obtain optimal features and find out the results of accuracy using for the classification of diabetes and cancer data. The medical data classification using Entropy Fuzzy C-Means based on kernel with Chi-Square feature selection gives the 100% highest accuration result for cancer data and 83,33% for diabetes data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Davie Muhamad
"Latar Belakang: Komplikasi pascaoperasi rentan terjadi pada populasi berisiko tinggi salah satunya adalah populasi yang menjalani operasi mayor. Infeksi daerah operasi (IDO) adalah salah satu komplikasi pascaoperasi yang sering ditemukan pada prosedur laparotomi. Pasien yang menjalani operasi akan mengalami respons stres pascaoperasi berupa peningkatan proses inflamasi yang berdampak pada peningkatan proteolisis protein otot. Sangat penting memerhatikan asupan protein praoperasi untuk meningkatkan cadangan protein otot, mendukung penyembuhan luka pascaoperasi dan imunitas. Penelitian terdahulu menjelaskan bahwa peningkatan asupan protein praoperasi sebesar 10% (> 1,2 g/kg BB/hari) dari kebutuhan dapat mengurangi risiko komplikasi (infeksi, non-infeksi dan dekubitus) sebesar 10%.
Metode: Studi kohort prospektif dilakukan pada 93 pasien dengan kelompok cukup protein sebanyak 48 subjek dan kelompok tidak cukup protein sebanyak 45 subjek yang akan menjalani laparotomi elektif di RSUPN Dr. Cipto Mangunkusumo, Jakarta. Analisis kecukupan protein dilakukan dengan metode wawancara selama 7 hari praoperasi. Pemantauan pasien dilakukan selama 30 hari pascaoperasi untuk menilai adanya komplikasi berupa IDO. Analisis hubungan keduanya dilakuan menggunakan uji Chi-Square dan dilakukan analisis multivariat untuk menilai faktor-faktor yang paling berhubungan dengan kejadian IDO pascalaparotomi elektif.
Hasil: Terdapat hubungan antara kecukupan protein praoperasi dengan kejadian infeksi daerah operasi pascalaparotomi elektif (RR 3,413; IK 95%, 1,363-8,549; p = 0,004). Hasil analisis multivariat menunjukan kecukupan protein praoperasi dan kadar albumin praoperasi berhubungan kuat untuk memprediksi terjadinya infeksi daerah operasi pascalaparotomi elektif.
Kesimpulan: Kecukupan protein dan kadar albumin praoperasi dapat memprediksi kejadian infeksi daerah operasi pascalaparotomi elektif.

Background: Postoperative complications are prone to occur in high-risk populations, one of which is the population undergoing major surgery. Surgical site infection (SSI) is one of the most common postoperative complications in laparotomy procedures. Patients who undergo surgery will experience a postoperative stress response in the form of an increase in the inflammatory process which results in an increase in muscle protein proteolysis. It is very important to focus on preoperative protein intake to increase muscle protein reserves, support postoperative wound healing and immunity. Previous research explained that the increment of preoperative protein by 10% (> 1.2 g/kg BW/day) can reduce the risk of complications (infectious, non-infectious and decubitus) by 10%.
Methods: A prospective cohort study was conducted on 93 patients with sufficient protein group of 48 subjects and protein insufficient group of 45 subjects undergoing elective laparotomy at Dr. Cipto Mangunkusumo Hospital, Jakarta. Analysis of protein adequacy was carried out by interview method for 7 days preoperatively. Patient monitoring was carried out for 30 days postoperatively to assess complications in the form of SSI. Analysis of association between protein adequacy and SSI was carried out by using the Chi-Square test and multivariate analysis was performed to assess the most associated factors with post elective laparotomy SSI.
Results: There is a association between preoperative protein adequacy and the incidence of post elective laparotomy SSI (RR 3,413; 95% CI, 1,363-8,549; p = 0,004). The multivariate analysis showed that preoperative protein adequacy and preoperative albumin levels were strongly related to predict the occurrence of post elective laparotomy SSI.
Conclusion: Preoperative protein adequacy and albumin levels were strongly related to predict post elective laparotomy SSI.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2023
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dwi Annisa Putri
"Telah dilakukan penelitian mengenai pola pewarisan warna bunga Zinnia elegans pada kelompok white dan red purple. Penelitian bertujuan untuk mengetahui warna bunga Z. elegans yang muncul dari parental berwarna putih (white group) dan pink keunguan (red purple group), sekaligus mengetahui pola pewarisan warna bunga Z. elegans yang tumbuh di alam. Penelitian dilakukan selama ±6 bulan dari bulan Januari sampai Juni 2020 menggunakan lima bunga, terdiri atas 2 set dari kelompok white (F0) dan 2set dari kelompok red purple (F0), dan 1 set dari kelompok red purple (F1) yang dijadikan sebagai parental. Hasil penelitian menunjukkan bahwa sifat warna bunga dari masing-masing parental diturunkan pada keturunannya. Warna baru dihasilkan dari set 1 kelompok white red purple. Warna bunga pada Zinnia elegans dapat dikelompokkan menjadi kelompok red, red purple, orange, yellow, dan white. Berdasarkan daftar warna (colour chart), masing-masing kelompok warna bunga memiliki intensitas warna yang beragam. Warna bunga yang dihasilkan dari kelompok pink keunguan lebih beragam daripada kelompok putih. Berdasarkan perhitungan chi-square, sebagian besar pola pewarisan Z. elegans yang dibiarkan tumbuh di alam mengikuti pola pewarisan dengan Z. elegans yang disilangkan oleh manusia, dan memiliki pola pewarisan yang berbeda dengan Z. elegans yang telah dimutasi.

Research on the inheritance pattern of Zinnia elegans from white and red-purple groups has been carried out. This research studies the color of Z. elegans flowers produced from white and red-purple flowers, while knowing the inheritance pattern of Z. elegans flowers in nature. This research was conducted for about six months from January to June 2020 and used four flowers, consisting of 2 sets of white groups (F0), two sets of red-purple groups (F0), and one set of red-purple groups (F1) to be used as parental. The results show the color nature of each parent produced in their generation. New colors are produced from set 1 of the white and red-purple group. The color of flowers in Z. elegans can be grouped into red, red-purple, orange, yellow, and white. Based on the color chart, each flower color group has a variety of color intensities. The color of the flowers produced from the red-purple group is more diverse than the white group. Based on the Chi-square calculation, most of the inheritance patterns of Z. elegans that are allowed to grow in nature follow the pattern resulting from crossing by humans and have different inheritance patterns from Z. elegansobtained from mutation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arfiani
"Stroke merupakan penyakit yang menempati urutan ketiga sebagai penyebab kematian terbesar di dunia setelah penyakit jantung dan kanker. Stroke juga menduduki posisi pertama sebagai penyakit yang dapat menyebabkan kecacatan, baik ringan maupun berat. Salah satu jenis stroke yang umum terjadi adalah infark serebri. Di Indonesia, jumlah penderita stroke, terutama infark serebri, semakin meningkat setiap tahunnya. Tidak hanya terjadi pada seseorang yang berusia lanjut, namun infark serebri juga dapat terjadi pada seseorang yang masih muda dan produktif. Oleh sebab itu, pendeteksian dini terhadap infark serebri sangatlah penting. Berbagai metode medis selalu digunakan untuk mengklasifikasi infark serebri, namun dalam penelitian ini, akan digunakan metode machine learning. Metode yang diusulkan yaitu Multiple Support Vector Machine dengan Seleksi Fitur Information Gain (MSVM-IG). MSVM-IG merupakan metode baru yang menggunakan support vector sebagai data baru untuk selanjutnya dilakukan seleksi fitur dan evaluasi performa. Data yang digunakan berupa data numerik hasil CT Scan yang diperoleh dari RSUPN dr. Cipto Mangunkusumo, Jakarta. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai nilai akurasi sebesar 88,71%. Sehingga, metode MSVM-IG ini dapat menjadi salah satu alternatif untuk membantu praktisi medis dalam mengklasifikasi infark serebri.

Stroke is a disease that ranks third as the biggest cause of death in the world after heart disease and cancer. Stroke also occupies the first position as a disease that can cause disability, both mild and severe. One type of stroke that is common is cerebral infarction. In Indonesia, the number of stroke patients, especially cerebral infarction, is increasing every year. Not only occurs in someone who is elderly, but cerebral infarction can also occur in someone who is young and productive. Therefore, early detection of cerebral infarction is very important. Various medical methods are always used to classify cerebral infarction, but in this study, machine learning methods would be used. The proposed method is Multiple Support Vector Machine with Information Gain Feature Selection (MSVM-IG). MSVM-IG is a new method that uses support vector as a new dataset, then feature selection step and performance evaluation are performed. The data used in the form of numerical data results of CT scan obtained from RSUPN Dr. Cipto Mangunkusumo, Jakarta. Based on the results, the proposed method is able to achieve an accuracy value of 88.71%. Thus, the MSVM-IG could be an alternative to assist medical practitioners in classifying cerebral infarction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Rizki Bagasta
"ABSTRAK

Infark Serebri adalah kondisi dari suatu jaringan otak yang tidak teralirkan darah sehingga sel-sel otak tersebut kekurangan oksigen dan nutrisi. Hal ini dapat mengakibatkan kerusakan bahkan kematian sel-sel otak dan perlu dengan segera mendapatkan penanganan. Keadaan ini sering dikenal sebagai Stroke, dimana pada penulisan ini akan berfokus pada data stroke nonhemoragik (stroke tidak berdarah) yang diakibatkan penyumbatan pembuluh darah di otak. Biasanya penyakit ini dapat dikenali dari gejala kelumpuhan suatu bagian tubuh atau kesulitan menggunakan suatu alat indra. Menurut para ahli, penyakit ini harus dicegah sejak dini karena dapat berakibat fatal bagi keseluruhan fungsional tubuh. Salah satu tindakan yang dapat dilakukan sejak dini adalah mendeteksi kemungkinan penyakit agar dapat dilakukan penanganan secara tepat dan cepat. Dalam penelitian ini, Infark Serebri dideteksi dengan mengklasifikasi ada atau tidaknya sel abnormal pada jaringan otak pada hasil CT Scan otak pasien menggunakan Support Vector Machine dengan Seleksi Fitur RELIEF. Data yang digunakan berupa data numerik dari pasien yang melakukan pemeriksaan di RSUPN dr. Cipto Mangunkusumo Jakarta dalam bentuk hasil CT Scan otak. Terdapat Sembilan fitur indikator yang digunakan dan diproses dengan membandingkan Support Vector Machine dengan dan tanpa seleksi fitur RELIEF. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai akurasi sebesar 95,23%. Sehingga, penggunaan seleksi fitur RELIEF pada SVM merupakan metode yang baik untuk menklasifikasi infark serebri.


ABSTRACT

 


The Cerebrovascular Infarction is a condition of an inflowed blood of brain tissue so that the brain cells lack oxygen and nutrients. This can cause the damage and even the death of brain cells and needed to get immediate treatment. This situation is often known as stroke, which at this writing will fokus on data on non-hemoragic strokes (non-bleeding strokes) caused by blockage of blood vessels in the brain. Usually this disease can be identified by symptoms of paralysis of some body part or difficulty using a human sensory. According to the experts, this disease must be prevented early because it can be fatal to the overall functional body. One of the actions that can be done early is to detect the possibility of a disease so that it can be handled appropriately and quickly. In this study, the cerebral infarction was detected by classifying the presence or absence of abnormal cells in brain tissue in the results of a CT brain scan of patients using Support Vector Machine with the RELIEF Selection Feature. The data used in the form of numerical data reports from patients who performed examinations at the RSUPN dr. Cipto Mangunkusumo Jakarta in the form of brain CT Scan. There are nine indicator features that are used and processed by comparing Support Vector Machine with and without RELIEF feature selection. Based on the results, the proposed method is able to achieve accuracy value of 95,23%. Thus, the use of RELIEF feature selection with SVM is a good method for classifying cerebral infarction.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>