Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 50554 dokumen yang sesuai dengan query
cover
Lydia Octaviani
"Hidrogen adalah sumber energi paling “bersih”, yang hanya menghasilkan air ketika dibakar. Akan tetapi, metode produksi hidrogen saat ini masih menghasilkan COx sebagai hasil samping. Studi menunjukkan bahwa produksi hidrogen dari pirolisis metana menghasilkan hampir tidak ada emisi COx, yang membuatnya dianggap sebagai teknologi penghubung untuk produksi hidrogen ramah lingkungan, sampai metode yang lebih “bersih” menggunakan sumber daya terbarukan matang. Namun, metode ini memiliki kelemahan yang mengharuskan operasi dalam suhu dan tekanan yang sangat tinggi. Riset untuk mengoptimalkan dan mengintensifkan teknologi ini tengah dikembangkan, termasuk dengan menggunakan katalis logam cair dalam reaktor bubble column yang diintegrasikan dengan membran. Tujuan dari penelitian ini adalah untuk mereproduksi secara matematis proses tersebut dalam MATLAB, untuk melihat apakah dalam penurunan suhu dan tekanan operasi, reaktor bubble column membrane dapat menghasilkan 100 kta hidrogen dan mencapai 95% konversi metana secara keseluruhan, dalam waktu tinggal 5 detik. Analisis sensitivitas juga dilakukan dengan mengubah beberapa parameter untuk menentukan kondisi operasi yang paling optimal. Ditemukan bahwa reaksi dapat mencapai konversi 95% selama 5 detik pada 1.021,35oC dan 30 bar, dengan katalis Ni0.27Bi0.73dalam reaktor berdiameter 2,05 meter setinggi 10,06 meter yang terdiri dari 25066 tabung membran palladium setebal 100 mikron
Hydrogen is the cleanest source of energy which only produces water when combusted. However, its current method of production (steam reforming) still emits COx as by-product. Studies show that hydrogen production from methane pyrolysis produces almost no COx emission, which makes it be considered as the bridging technology to cleaner hydrogen production until the cleaner methods using renewable resources mature. However, it has a drawback of having to be operated in very elevated temperature and pressure. There have been several developments being studied to optimise and intensify this technology, including by utilising molten metal catalyst in membrane-integrated bubble column reactor. The purpose of this study is to mathematically reproduce the process in MATLAB, to see if, in reduced operating temperature and pressure, bubble column membrane reactor can produce 100 kta of hydrogen production and achieve 95% overall methane conversion, within residence time of 5 seconds. Sensitivity analysis is also conducted by altering several parameters to determine the most optimum operating conditions. It is found that the reaction can reach 95% conversion in 5 seconds at 1021.35oC and 30-bar, with Ni0.27Bi0.73catalyst in 10.06-meter tall and 2.05-meter diameter reactor that is comprised of 25066 tubes of 100-micron thick palladium membrane."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramaniya Anindita Wandawa
"Penelitian dilakukan untuk melakukan uji kinerja reaktor katalis terstruktur pelat untuk produksi carbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis Ni-Cu-Al dengan perbandingan molar 2:1:1. Reaksi dekomposisi katalitik metana dilakukan pada suhu 700oC selama 5 jam, dengan variasi space time 0,0006; 0,0032; 0,006 gr min/mL. Hasil uji kinerja tertinggi didapatkan pada space time 0,006 gr min/mL dengan konversi metana tertinggi 83,01% , kemurnian hidrogen tertinggi 70,23% , dan yield karbon 2,5 gr/gr katalis. Carbon nanotube yang dihasilkan memiliki diameter dalam 7,5-15 nm dan berbentuk Y-junction.

Abstract
The purpose of this research is to test the performance of plate structured catalyst to produce carbon nanotube and hydrogen via catalytic decomposition of methane. In this research, catalyst of Ni-Cu-Al with the molar ratio by 2:1:1 was used. The decomposition reaction took place at 700oC temperature for 5 hours, using 0,0006; 0,0032; and 0,006 gr min/mL space time variations. The maximum performance space-time was 0,006 gr min/mL with 83,01% for the highest number of methane conversion, 70,23% for the highest number of hydrogen purity, and 2,5 gr C/ gr catalyst carbon yield. The carbon nanotubes produced from the research were Y-junction-shaped and have 7,5-15 nm inner diameter.
;"
Fakultas Teknik Universitas Indonesia, 2012
S43475
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Riyandi Chairul
"Evaluasi dan perbaikan desain scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity. Menggunakan basis data scale up laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter wire 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm2. Penelitian ini bertujuan untuk memperbaiki desain reaktor dan sistem produksi pada reaktor dengan katalis terstruktur wire melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al untuk memproduksi nanokarbon dan hidrogen. Pada reaktor katalis terstruktur wire ini dilakukan uji kinerja selama 860 menit pada suhu 700_C. Konversi metana tertinggi adalah 41,66% dan kemurnian hidrogen tertinggi adalah 30,45%. Yield karbon yang dihasilkan oleh 4,71 gram katalis adalah 179,15 gram karbon.

Evaluation and improvement design of Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity. Seize on scale up data, 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm wire diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to improve reactor design and production system by gauze-type structural catalyst reactor through catalytic decomposition of methane with Ni-Cu-Al catalyst. Performance experiment that have already done during 860 minutes at 700_C are stability test for 17 hours and activity test for 20 minutes of gauze structural catalyst at 700_C. The highest conversion of methane is 41,66% and the highest hydrogen purity is 30,45%. Yield carbon that produced by 4,71 gram catalyst is 179,15 gram carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51701
UI - Skripsi Open  Universitas Indonesia Library
cover
Refani Iskandar
"Penelitian ini dilakukan untuk mendapatkan rancangan reaktor katalis terstruktur pelat sejajar yang digunakan untuk memproduksi nanokarbon dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis multimetal Ni-Cu-Al 3:2:1. Pada reaktor katalis terstruktur pelat sejajar ini dilakukan pengujian untuk 20 menit dan 355 menit reaksi. Pada 20 menit reaksi, konversi metana tertinggi yang didapat adalah 70,16% dengan kemurnian hidrogen 74,29% dan yield karbon 2,58 gram. Pada 355 menit reaksi, didapatkan bahwa konversi metana mengalami penurunan dari 76,15% hingga 46,06% dan naik kembali pada menit ke-235 sebesar 59,90% kemudian cenderung stabil setelah menit ke-235. Pada 6 jam reaksi uji stabilitas, yield karbon yang dihasilkan 17,25 gram.

The purpose of this research is to construct plate catalyst structured to produce nanocarbon and hydrogen with catalytic decomposition of methane. Catalyst which is used in this research is multimetal catalyst, Ni-Cu-Al 3:2:1. Two experiment that had already done were twenty minutes and 355 minutes reactions. The highest conversion of methane is 70,16% and 74,29% hydrogen purity for twenty minutes reaction and yield carbon was 2,58 gram. For 355 minutes reaction, the conversion of methane decreasing from 76,15% to 46,06% and increase to 59,90%. After that, methane conversion relative stabil. After 355 minutes reaction , yield carbon was 17,25 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51732
UI - Skripsi Open  Universitas Indonesia Library
cover
Alif Kurniaputera Artanto
"Dewasa ini kebutuhan akan bahan bakar minyak dalam Indonesia semakin meningkat, tetapi tidak disertai oleh peningkatan produksi minyak dan gas. Salah satu cara untuk mengatasi hal tersebut adalah dengan menggunakan batubara lignit dalam proses gasifikasi untuk membentuk syngas yang kemudian digunakan untuk mensintesis bahan bakar. Untuk proses gasifikasi tersebut diperlukan charcoal yang memiliki luas permukaan yang besar yang dapat dihasilkan dari proses pirolisis batubara lignit. Penelitian ini bertujuan untuk mengetahui kondisi pirolisis yang optimal untuk mendapatkan charcoal dengan luas permukaan yang terbesar.
Pada penilitian ini, telah ditemukan bahwa kenaikan suhu akhir pirolisis dapat meningkatkan luas permukaan charcoal, sedangakan meningkatkan laju pemanasan akan menurunkan luas permukaan charcaol. Selanjutnya, dari penelitian ini diketahui bahwa peningkatan suhu akhir dan laju pemanasan dapat meningkatkan pengurangan massa dari sampel. Berdasarkan uji BET kondisi yang dapat menghasilkan luas permukaan yang terbesar adalah pada suhu akhir 850°C dan laju pemanasan 3°C/menit dengan luas permukaan sebesar 168,6 m2/g.

Presently, Indonesia’s requiremenets on fossil fuels continues to increase yet this increase is not accompanied by an increase in the production of oil and gas. One method to overcome this problem is to gasify lignite coal in order to produce synthetic gas which would be then used to be able to produce synthetic fuel. As a requirement for the gasification process, the charcoal used must require a large surface area which can be achieved through the pyrolisis of lignite coal. This research aims to identify the optimum operating conditions which would lead to the production of charcoal with the largest surface area.
In this research it was found that an increase in the final pyrolysis temperature would increase the surface area, on the other hand an in crease in the heating rate would decrease th surface area. Next, it was also apparent that an increase in final temperature and heating rate would both cause an increase in the weight loss of the sample. According to the BET analysis, the conditions which produced the largest surface area was at a final temperature of 850°C and a heating rate of 3°C/minute, with a surface area of 168,6 m2/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52854
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ira Yulianti
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi secara simultan. Nanokarbon banyak diaplikasikan dalam penyimpanan hidrogen, support katalis, alat penyimpan memory, penyimpanan emisi, dan industri polimer, sedangkan hidrogen dapat digunakan sebagai umpan pada sel bahan bakar (fuel cell) yang ramah lingkungan karena apabila dibakar tidak menghasilkan polutan. Masalah yang biasanya timbul dalam reaksi dekomposisi katalitik metana ini adalah terjadinya deaktivasi katalis akibat deposit karbon dan terjadinya pressure drop di dalam reaktor.
Penelitian ini bertujuan menguji kinerja reaktor dengan katalis terstruktur untuk mengatasi pressure drop di dalam reaktor. Katalis Ni-Cu-Al dipreparasi dengan menggunakan metode sol-gel dengan perbandingan atomik 2:1:1. Katalis ini dilapisi pada kawat stainless steel yang telah dibentuk dengan metode dip coating. Reaksi dilakukan dengan mengalirkan metana ke dalam reaktor pada temperatur 650°C dan 700°C serta tekanan atmosferik. Produk gas dianalisis dengan menggunakan gas chromatography yang terpasang secara online dengan aliran keluar reaktor. Penggunaan katalis terstruktur pada dua temperatur berbeda ini dapat menghasilkan konversi metana hingga 87.55 % dan 94.87%. Produk dari reaksi dekomposisi katalitik metana berupa hidrogen memiliki kemurnian hingga 87.53% dan 95.14%.
Karbon yang dihasilkan memiliki yield 28.45 dan 32.85 gr karbon/gr katalis untuk waktu reaksi 8.4 jam. Untuk reaksi selama 33 jam menghasilkan 201 gr karbon/gr katalis. Karakterisasi dengan menggunakan TEM menunjukkan karbon yang dihasilkan berbentuk nanotube dengan diameter 50-100. Pada reaktor dengan katalis terstruktur ini tidak terjadi pressure drop yang dapat mengakibatkan berakhirnya reaksi. Reaksi berakhir karena katalis sudah terdeaktivasi akibat tertutupnya permukaan katalis oleh deposit karbon. Lifetime katalis dapat mencapai 33 jam dan masih dapat berlanjut.

Methane decomposition is an alternative way to produce high quality carbon nanotubes (CNTs) and hydrogen simultaneously. CNTs can been used for various applications such as hydrogen storage, electronic device, composite materials, field emission source, and catalyst support. Hydrogen can be used as the future clean energy resource such as for fuel cells, which doesn't emit pollutants when combusted. The problem often found in methane catalytic decomposition is the presence of pressure drop. This problem is expected to be solved by designing a structured catalyst reactor.
In this experiment, Ni-Cu-Al catalyst is prepared by sol-gel method. Stainless steel wiremesh is coated with catalyst by dip coating method and put into a quartz tube reactor. The experiment was done at 650°C and 700°C with atmospheric pressure. Methane is fed into the reactor and decomposed by the catalyst. An online chromatograph is used to detect the gas products. The morphology of CNTs is characterized by TEM. The use of structured catalyst in these two different temperature gives conversion of methane up to 87.55 % and 94.87%. Hydrogen as the product has a purity of 87.53% dan 95.14% .
The carbon yields are 28.45 and 32.85 gr carbon / gr catalyst for 8.4 hours of reaction. For 33 hours of reaction, the yield becomes 201 gr carbon/ gr catalyst. TEM characterization shows that the diameter of CNTs are between 50-100 nm for both cases. Pressure drop isn't found in this structured catalyst reactor which could end the reaction. The reaction ends when the catalyst is deactivated due to carbon deposit on the catalyst. The lifetime of the catalyst can reach 33 hours and can still continue.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49673
UI - Skripsi Open  Universitas Indonesia Library
cover
Saragih, Kanissa Anggita
"Perubahan iklim mulai menjadi perhatian besar masyarakat karena suhu bumi meningkat lebih cepat dari yang diperkirakan oleh para pengamat lingkungan. Salah satu faktor yang berkontribusi terhadap ini adalah tingginya konsumsi bahan bakar fosil dari aktifitas sehari-hari masyarakat yang membuat komposisi karbon dioksida (CO2) di atmosfer meningkat. Kemajuan yang meningkat menuju circular economy mendorong berkembangnya bahan bakar terbarukan seperti hidrogen (H2) sebagai sumber energi. Bahan bakar hidrogen adalah bahan bakar bersih yang dapat dihasilkan dari gas alam, energi terbarukan, dan biomassa seperti ampas tebu. Pasar bahan bakar ini menunjukkan masa depan yang menjanjikan karena minat untuk menggunakan bahan bakar hidrogen meningkat setiap tahun. Proses produksi dengan menggunakan 2000 ton ampas tebu per hari akan didesain. Gasifikasi termal adalah proses yang dipilih untuk produksi hidrogen berdasarkan persyaratan untuk proyek ini. Proses tersebut terdiri dari empat tahap: pra-pengolahan ampas tebu, gasifikasi, pembersihan gas dan pemisahan gas. Dalam setiap tahapan, teknologi alternatif dievaluasi untuk menemukan teknologi yang sesuai yang dapat diterapkan dan memenuhi spesifikasi proses. Dalam makalah ini, proses pembersihan gas dan desain peralatan diselidiki lebih lanjut dengan tujuan menghilangkan gas asam dan meningkatkan komposisi H2 melalui reaksi pergeseran air-gas. Meminimalkan dampak lingkungan dari proses ini juga merupakan salah satu tujuannya. Karbon dioksida (CO2), gas asam (H2S) dan emisi flash vapor amina yang kaya, dan air limbah adalah dampak lingkungan yang diidentifikasi dalam proses ini yang perlu dikelola secara efektif.

Climate change starts to become a big concern to the people as the Earth’s temperature is increasing faster than the predicted. One of the factors of it is the big consumption of fossil fuels in people’s activity in their daily lives which contributes to the increase of carbon dioxide (CO2) in the atmosphere. The increasing progress towards a circular economy drives the development of renewable fuel such as hydrogen (H2) as an energy source. Hydrogen fuel is a clean fuel that can be produced from natural gas, renewable power and biomass such as sugarcane bagasse. The market for this fuel shown a promising future as the interest on using hydrogen fuel increasing each year. A production process using 2000 tonnes per day of sugarcane bagasse is to be designed. Thermal gasification is chosen process for hydrogen production based on the brief given. The process consists of four stages: bagasse pre-treatment, gasification, gas cleaning and gas separation. In each stages, alternative technologies are assessed and evaluated to find the suitable technology that can be applied and meet the process specification. In this paper, the gas cleaning process and equipment designs are further investigated with the objective of removing the acid gas and increasing the H2 composition via water-gas shift reactions. Minimizing the environmental impact from this process is also one of the objectives. Carbon dioxide (CO2), acid gas (H2S) and rich amine flash vapor emissions, and wastewater are the environmental impacts identified in this process that need to be managed effectively."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ary Mauliva Hada Putri
"Tujuan dari penelitian ini adalah membuat model matematis serta melakukan simulasi proses adsorpsi gas metana dari campuran biner gas hidrogen-metana pada kolom adsorpsi fixed bed (unggun diam) dengan karbon aktif sebagai adsorbennya. Proses adsorpsi pada permukaan pori karbon aktif diasumsikan bertipe micropore adsorption. Profil konsentrasi adsorbat pada arah radial dimodelkan berbentuk polinomial orde 4 dan isotropik. Pendekatan ini berhasil mereproduksi bentuk linear driving force walaupun terdapat koreksi terhadap koefisien transfer massa, yang pada gilirannya berpengaruh pada koefisien difusivitas efektif. Di samping profil kuartik, dalam penelitian ini juga diasumsikan linear isotherm dan kondisi plug flow. Asumsi terakhir berdasar pada fakta bahwa efek dispersi tidak terlalu signifikan pada aliran bulk dengan kecepatan alir yang rendah. Simulasi juga dilakukan untuk melihat efek panjang kolom, kecepatan alir fluida, serta konsentrasi awal gas metana. Hasil yang didapat menunjukkan bahwa saturasi sebanding dengan panjang kolom, dan berbanding terbalik dengan konsentrasi awal, kecepatan alir, dan nilai koefisien difusivitas efektif. Untuk kecepatan alir 0.1 cm/s dan fraksi mol awal metana 30%, diperoleh saturasi akan terjadi setelah 17 menit untuk panjang kolom fixed bed 100 cm. Waktu ini akan menjadi sekitar 8 menit jika panjang kolom dikurangi setengahnya atau 50 cm. Efek penambahan suku kuartik tidak berpengaruh signifikan pada kurva breakthrough.

The purpose of this study is to make a mathematical model that can describe the adsorption of hydrogen from a mixture of hydrogen-methane in fixed-bed column. The adsorbent is supposed to be an activated carbon. The adsorbate concentration profile is assumed to take the polynomial of order 4, while still assuming the spherically symmetric pellets. This procedure successfully reproduces the linear driving force form with some correction to mass transfer coe cient. The result shows that effect of such quartic term can affect the di usivity coe cient. The simulation was done by incorporating some assumptions, such as linear isotherm and the plug flow condition. The latter is due pretty much to the fact that the dispersion e ect is less dominant in bulk flow especially at low velocity. Furthermore, the simulation was aimed to get better understanding of how column length, flow velocity, and also initial mole fraction affect the adsorption. In addition, the time needed to reach saturated point is found to be proportional to column length, whereas it is inversely proportional to the initial concentration, flow velocity, and effective di usivity. For velocity equal to 0.1 cm/s and methane initial mole fraction 30%, the saturation will occur after approximately 17 minutes for column length 100 cm. This saturation time will be lowered into about 8 minutes for a bed length 50 cm. The simulation also shows that the inclusion of quartic term does not significantly affect the breakthrough curve."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Francy
"Scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity menghasilkan laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter gauze 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm 2. Penelitian ini bertujuan untuk memproduksi nanokarbon dan hidrogen dengan katalis terstruktur gauze melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al. Pada reaktor katalis terstruktur gauze ini dilakukan uji aktifitas selama 20 menit dan uji stabilitas selama 17 jam pada suhu 700°C. Untuk uji stabilitas dengan 20 L/jam metana, konversi metana tertinggi adalah 96,77% dan kemurnian hidrogen tertinggi adalah 97,46%. Yield karbon yang dihasilkan oleh 1,83 gram katalis adalah 170,36 gram karbon. Untuk uji aktivitas dengan laju alir metana 6 L/jam diperoleh konversi metana tertinggi adalah 76,1% dan kemurnian hidrogen tertinggi adalah 79,3%. Yield karbon yang dihasilkan oleh 1,81 gram katalis adalah 57,34 gram karbon. Dari hasil percobaan diperoleh bahwa kapasitas reaktor ini adalah 393,19 gram/hari.

Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity results in 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm gauze diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to produce nanocarbon and hydrogen by gauze-type structural catalyst through catalytic decomposition of methane with Ni-Cu-Al catalyst. Two experiment that have already done are stability test for 17 hours and activity test for 20 minutes at 700°C. In stability test with 20 L/h methane flow, the highest conversion of methane is 96,77% and the highest hydrogen purity is 97,46%. Yield carbon that produced by 1,83 gram catalyst is 170,36 gram carbon. In activity test with 6 L/h methane flow, the highest conversion of methane is 76,1% and the highest hydrogen purity is 79,3%. Yield carbon that produced by 1,81 gram catalyst is 57,34 gram carbon. From the experiment, the production capacity of the reactor is 393,19 gram C/day."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52239
UI - Skripsi Open  Universitas Indonesia Library
cover
Herry Prasetyo Anggoro
"Reaktor terstruktur gauze digunakan sebagai solusi dari masalah yang ditemukan pada penggunaan reaktor fixed bed untuk reaksi dekomposisi katalitik metana. Reaktor terstruktur gauze memiliki beberapa kelebihan, yaitu memiliki pressure drop yang rendah dan konversi lebih tinggi.
Pada penelitian ini, dilakukan pemodelan dan simulasi reaktor terstruktur gauze menggunakan Computational Fluid Dynamics yang mengacu pada kinetika Snoeck, 1997. Pemodelan hanya mempertimbangkan neraca massa dan momentum, di mana reaktor diasumsikan bersifat isotermal.
Simulasi dilakukan dengan mengubah-ubah variabel proses seperti temperatur reaktor, komposisi masukkan, tekanan masukkan, dan kecepatan masuk. Melalui simulasi variasi proses, dapat diketahui pengaruh perubahan kondisi operasi terhadap kinerja reaktor, seperti pada kenaikan temperatur akan menyebabkan konversi reaktor semakin meningkat.

Gauze structured reactors are used as the solution of problems found in the use of fixed bed reactor for reaction of catalytic decompotition methane. Gauze structured reactor has several advantages, having a low pressure drop and higher conversion.
In this study, the modeling and simulation of structured gauze reactor using Computational Fluid Dynamics refers to the kinetic Snoeck, 1997. Modelling only consider the mass balance and momentum, where the reactor is assumed to be isothermal.
Simulations carried out by varying process variables such as reactor temperature, inlet composition, inlet pressure and inlet velocity. Through the simulation process variations, we can know the effect of changing operating conditions on reactor performance, such as the rise in temperature will cause the reactor conversion increases.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51793
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>