Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128784 dokumen yang sesuai dengan query
cover
Risti Dwi Putri
"ABSTRAK
Pada saat ini, buah-buahan dilapiskan lilin untuk mempertahankan kualitas dan memperpanjang usia simpan buah. Pengukuran kualitas buah yang dilapiskan lilin umumnya bersifat destruktif. Pengukuran kualitas buah berlapis lilin menggunakan citra VNIR belum pernah dilakukan, sehingga diperlukan pengkajian lebih lanjut mengenai pengaruh lapisan lilin pada pengukuran kualitas buah berbasis citra VNIR. Dalam penelitian ini, lilin lebah digunakan untuk melapiskan apel malang. Partial Least Square Regression (PLSR) dan Regression Tree (RT) digunakan sebagai algoritma seleksi fitur dan model regresi. Dalam penelitian ini, pemodelan dibentuk menggunakan apel tidak berlapis lilin, apel berlapis lilin, gabungan antara apel tidak berlapis lilin dan apel berlapis lilin. Selanjutnya, dilakukan pengujian apel malang berlapiskan lilin terhadap model prediksi kekerasan apel malang tidak berlapiskan lilin. Sistem prediksi kekerasan memiliki performa terbaik jika menggunakan data pelatihan dan data pengujian berupa apel tidak berlapis lilin saja. Hasil dari model PLSR dan RT menggunakan apel tidak berlapis lilin sebesar 0,97 dan 0,88 pada R2; 3,22 dan 6,65 pada RMSE. Berdasarkan hasil tersebut, lapisan lilin pada permukaan buah dapat memengaruhi hasil pengukuran berbasis citra VNIR.

ABSTRACT
These days, wax coating was applied on fruits to maintain its quality and extends the shelf life. The quality measurement of the waxed fruit was destructive in most cases. The quality measurement of the waxed fruit with VNIR image had never been done before, so further study about the effect of wax coating for VNIR image-based fruit quality measurement was needed. In this study, beeswax is used to coated Malang apples. Partial Least Square Regression (PLSR) and Regression Tree (RT) used as feature selection and regression model algorithm.  In this study, a regression model was built using non-waxed Malang apples, waxed Malang apples, a combination of non-waxed Malang apples and waxed Malang apples. Next, the waxed Malang apples was tested to the firmness prediction model of the non-waxed Malang apples. Firmness prediction system of Malang apples obtained the best performance if using training data and test data of non-waxed Malang apples. The results of PLSR and RT model using non-waxed Malang apples were 0.97 and 0.88 for R2, 3.22 and 6.55 for RMSE. Based on these results, wax coating on the surface of the fruit could disrupt the measurement results of VNIR image."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Praditya
"ABSTRAK
Identifikasi lapisan lilin pada buah sangat sulit dilakukan tanpa adanya suatu sistem yang bersifat non-destruktif. Pada umumnya, dilakukan metode yang bersifat destruktif untuk mengetahui ada atau tidaknya suatu lapisan pada buah, seperti merendam buah pada air panas, menggunakan campuran cuka dengan air, atau campuran soda kue dengan air. Adapun metode destruktif lainnya yang menggunakan instrumentasi kromatografi gas, dimana proses ini membutuhkan waktu yang lama dan pengoperasian yang sulit. Citra VNIR menjadi metode terbaru untuk mengatasi masalah tersebut karena metode ini bersifat non-destruktif dan lebih mudah untuk dioperasikan. Dalam penelitian ini, sistem identifikasi ada atau tidaknya lapisan lilin pada buah apel berhasil dibuat. Proses dimulai melalui akuisisi citra, koreksi citra, object detection, window averaging, model klasifikasi, hingga mendapatkan status pelapisan (coating status). Citra diakuisisi pada rentang panjang gelombang 400 hingga 100 nm. Profil reflektansi yang didapat, selanjutnya dikomparasikan antara satu kelas dengan kelas lainnya, sehingga terlihat perbedaan yang mencolok diantara keduanya. Selanjutnya, model akan diuji dan dievaluasi menggunakan data referensi yang merupakan hasil klasifikasi secara manual. Pembuatan dan pengujian model dilakukan melalui proses traning dan testing data. Pada penelitian ini, digunakan beberapa model klasifikasi yang dibuat berdasarkan profil reflektansi dari setiap citra yang telah diakuisisi. Hasil akurasi model melalui evaluasi confusion matrix didapat sebesar 70,83% untuk model PCA-SVM, 95,42% untuk model DT, dan 98,33% untuk model RF.

ABSTRACT
Wax coating identification on fruits is very difficult without a non-destructive system. In general, destructive methods were used to find out whether or not there are coatings on fruit, such as soaking fruit in hot water, using a mixture of vinegar and water, or baking soda and water. There are other destructive methods using instrumentation like gas chromatography, where this process takes much time and difficult to operate. VNIR imaging becomes the latest method to overcome this problem because this method is non-destructive and easier to operate. In this study, identification system for the presence or absence of wax coating on apples has been successfully made. The process starts through image acquisition, image correction, object detection, window averaging, classification model, until we got the coating status. The image was acquired on a wavelength range from 400 to 1000 nm. The reflectance profile is obtained, then it is compared between one class and the other class, until there is a noticable difference between the two. Next, the model will be tested and evaluated using reference data which is the result of manual classification. The making and testing of the model was done through the process of data training and data testing. In this study, several classifications models were made based on the reflectance profile of each acquired image. The accuracy of the model through confusion matrix evaluatin were 70.83% for the PCA-SVM model, 95.42% for the DT model, and 98.33% for the RF model."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sabar
"ABSTRAK
Kadar air dan kadar garam merupakan beberapa parameter yang digunakan untuk memprediksi tingkat kualitas teripang pasir kering (Holothuria scabra) atau yang dikenal Bêche-de-mer. Namun, pengukuran kadar air dan garam umumnya bersifat destruktif dan dilakukan secara manual melalui uji laboratorium sehingga memakan waktu yang lama. Dalam penelitian ini, sistem pengukuran yang dikembangkan untuk memprediksi kualitas teripang pasir kering adalah sistem pengukuran yang berbasis citra Visible Near-Infrared (V-NIR) yang mampu mengukur kadar air dan garam secara non-destruktif. Algoritma partial least squares regression (PLSR) digunakan untuk membangun model prediksi pada data spektral. Sistem pengukuran untuk kadar air dan garam di evaluasi dengan koefisien korelasi untuk data pelatihan sebesar 0,99 dan 0,99 secara berurutan. Sedangkan untuk root mean square error dari kadar air dan garam adalah 0,92 dan 0,11. Hasil penelitian ini menunjukkan bahwa sistem ini dapat diusulkan sebagai sistem pengukuran kadar air dan garam secara non-destruktif untuk menguji kualitas pada teripang pasir kering (Holothuria scabra) dan dapat diimplementasikan sebagai sistem penyortiran di dunia industri

ABSTRACT
Water content and salt Content are parameters used to predict the quality level of dried sea cucumber (Holothuria scabra) or known by Beche-de-mer. However, Measurements of moisture content and salt content are generally conductive and carried out manually through laboratory tests so that it takes a long time. In this study, a measurement system developed to predict the quality of dried sea cucumber is a valid system for Visible-Near Infrared (V-NIR) images based on the spectral reflectance characteristics of the moisture content and salt content to predict non-destructively the values ​​of the moisture and salt content. The partial least squares regression (PLSR) algorithm is used to build prediction models on spectral data. Predictive system models are used to obtain moisture and salt values. The predicted results are compared with the results of measurements of data references obtained using the laboratory test. The measurement prediction system for moisture and salt content has a correlation coefficient for test data 0,99 and 0,99 respectively. While for the root mean square error of the water and salt levels are 0,92 and 0,11. The results of this study indicate that this system can be proposed as a non-destructive system of measuring moisture and salt content to test the quality of dried sea cucumbers (Holothuria scabra) and is suitable for implementation in sorting systems in the industrial world"
2019
T54260
UI - Tesis Membership  Universitas Indonesia Library
cover
Siregar, Septi Tri Wahyuni
"ABSTRAK
Umumnya kadar air buah dapat diukur dengan membandingkan reduksi massa benda dengan metode pengeringan oven. Dalam tulisan ini, sistem prediksi kadar air pisang diperkenalkan dengan teknik pencitraan VNIR Visible Light ndash; Near Infrared . Teknik pencitraan hiperspektral dengan menggunakan citra VNIR merupakan teknologi yang dapat diandalkan dalam pengujian kualitas buah secara non destruktif, cepat dan efisien. Sistem prediksi ini menggunakan PCA dan PLS sebagai model regresi untuk mendapatkan hasil kuantitatif nya. Hasil regresi yang didapatkan dari PCA untuk pisang raja berupa RMSE Root Mean Square Error sebesar 0.65 dan R2 Coerrelation Coefficient sebesar 0.71. Sedangkan hasil dari PLS yaitu RMSE sebesar 0.54 dan R2 sebesar 0.82. Hasil regresi dari PLS relatif lebih baik daripada PCA dan lebih akurat. Untuk mengetahui klasifikasi tingkat kematangannya, sistem prediksi kadar air pisang ini menggunakan SVM.

ABSTRACT
Commonly, the fruit moisture content could be measured by comparing the mass decrement of object through oven drying method. In this paper, a bananas moisture content prediction system was introduced using Visible Light ndash NIR imaging technique. Hyperspectral imaging technique using VNIR image is a reliable technology in fruit quality testing non destructive, fast and efficien. The prediction system uses PCA and PLS as a regression model to get its quantitative results. Regression results obtained from PCA for Raja bananas in the form of RMSE Root Mean Square Error of 0.65 and R2 Correlation Coefficient of 0.71. While the results of the PLS RMSE of 0.54 and R2 of 0.82. Regression results from PLS are relatively better than PCA and more accurate. To determine the classification of the level of maturity, the moisture content of bananas prediction system uses SVM Support Vector Machine."
2017
S67131
UI - Skripsi Membership  Universitas Indonesia Library
cover
Femilia Putri Mayranti
"ABSTRAK
Sistem prediksi berbasis citra VNIR mampu untuk memprediksi parameter tertentu pada suatu objek. Parameter seperti kadar fenolik dari daun bisbul dapat diprediksi dengan sistem prediksi berbasis citra VNIR. Citra VNIR daun bisbul diakuisisi menggunakan kamera hiperspektral dengan rentang 400 hingga 1000 nm. Model regresi yang digunakan pada sistem prediksi ini meliputi Support Vector Regression (SVR), Partial Least Square Regression (PLSR), serta Decision Tree Regression (DTR). Dari ketiga model tersebut didapatkan nilai error yang menunjukkan performa sistem prediksi yang dibuat. Error berupa koefisien determinasi (R2) dan Root Mean Square Error (RMSE). Nilai koefisien determinasi (R2) sebesar 0,95 (SVR); 0,91 (PLSR); dan 0,90 (DTR). Serta untuk RMSE sebesar 2,66 (SVR). 3,60 (PLSR), dan 3,90 (DTR). Berdasarkan hasil koefisien korelasi dari ketiga model tersebut, dapat disampaikan bahwa kadar fenolik dari daun bisbul dapat diprediksi dengan menggunakan model SVR untuk performa yang baik dan menggunakan parameter fungsi kernel polinomial orde 3. Nilai prediksi kadar fenolik rata-rata dari ketiga model sebesar 32,72 GAE(µg/mg) untuk DTR; 32,46 GAE(µg/mg) untuk PLSR; dan 32,27 GAE(µg/mg) untuk SVR.

ABSTRACT
Prediction systems based on VNIR images are able to predict certain parameters on an object. Parameters such as the phenolic content of Diospyros discolor Willd leaf can be predicted by this system. VNIR images of Diospyros discolor Willd leaf acquired using a hyperspectral camera with a range of 400 to 1000 nm. The regression model to predict the content used Support Vector Regression (SVR), Partial Least Square Regression (PLSR), and Decision Tree Regression (DTR). Based on three models, an error value is obtained that indicates the performance of the predictive system. The error value such as coefficient correlation (R) and Root Mean Square Error (RMSE). The value of R from the models are 0,95 (SVR); 0,91 (PLSR), and 0,90 (DTR). The value of RMSE from the models are 2,66 (SVR). 3,60 (PLSR), and 3,90 (DTR). Value of predicted total phenolic content from the models are 32,72 GAE(µg/mg) for DTR; 32,46 GAE(µg/mg) for PLSR; dan 32,27 GAE(µg/mg) for SVR. Based on the coefficient correlation, phenolic content can be predicted using SVR model for best result with kernel function polynomial 3 order.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara De Arifani
"Smoker's melanosis menjadi cara untuk mengetahui seseorang tersebut perokok atau tidak dari area lidah. Smoker’s melanosis adalah berubahnya warna pigmentasi melanin pada mukosa mulut menjadi warna coklat atau hitam. Pendeteksian ini biasanya dilakukan oleh para dokter dengan metode Traditional Chinese Medicine. Namun, pendeteksian ini membutuhkan waktu lama. Penelitian ini bertujuan untuk membuat sistem deteksi lidah seseorang perokok atau tidak dengan implementasi algoritma Deep Learning. Penelitian menggunakan kamera hiperspektral dengan panjang gelombang VNIR untuk merekam citra lidah seseorang dan mengolahnya menjadi suatu informasi yang dapat digunakan untuk sistem ini. Implementasi algoritma dilakukan pada 5 dataset yang berbeda dan didasarkan pada area pengambilan ROI pada lidah seseorang. Algoritma yang diimplementasikan dalam penelitian ini berfokus pada algoritma Deep Learning, yaitu algoritma Convolutional Neural Network (CNN) dengan variasi dua jenis arsitektur, yaitu Autoencoder dan Proposed Architecture. Kedua arsitektur ini dijalankan dengan memvariasikan algoritma pengoptimalan seperti SGDM, Adam, dan RMSProp. Selain itu, penelitian ini membandingkan pula dengan PCA-SVM untuk melihat kinerja dari Machine Learning untuk diimplementasikan dalam data penelitian ini. Proposed Architecture mencapai akurasi sebesar 95% pada algoritma pengoptimalan SGDM dan PCA-SVM yang digunakan mencapai akurasi sebesar 81%. Hasil ini menunjukkan bahwa sistem deteksi lidah perokok dapat bekerja lebih baik dengan pengimpelementasian Deep Learning.

Smoker’s melanosis is a way to tell if someone is a smoker or not from the tongue area. Smoker’s melanosis is a brown or black discoloration of the melanin pigmentation in the oral mucosa. This detection is usually carried out by doctors using the Traditional Chinese Medicine method. However, this detection takes a long time. This study aims to create a tongue detection system for someone who smokes or not by implementing the Deep Learning algorithm. This research uses a hyperspectral camera with a VNIR wavelength to record an image of a person’s tongue and process it into information that can be used for this system. Algorithm implementation is carried out on five different datasets and is based on the area of taking the ROI on one’s tongue. The algorithm implemented in this study focuses on the Deep Learning algorithm, namely the Convolutional Neural Network (CNN) algorithm with variations of two types of architecture, namely Autoencoder and Proposed Architecture. Both architectures are executed by varying the optimization algorithms such as SGDM, Adam, and RMSProp. Also, this study also compares with PCA-SVM to see the performance of Machine Learning to be implemented in this research data. Proposed Architecture achieves 95% accuracy in the optimization algorithm SGDM and PCA-SVM, which is used to achieve an accuracy of 81%. These results indicate that the smoker’s tongue detection system can work better with the implementation of Deep Learning.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zhorif Maulana Akram
"Negara Indonesia merupakan salah satu negara di dunia, khususnya di benua Asia yang menjadikan beras sebagai bahan pangan pokok. Hal tersebut membuat permintaan akan bahan pangan tersebut menjadi tinggi, dan membuat banyak orang menanam padi di berbagai wilayah di Indonesia. Namun hal tersebut tidak membuat semua beras hasil panen dari berbagai wilayah menjadi bernilai sama di pasaran. Sehingga beras-beras yang ada tersebut kemudian dibedakan berdasarkan wilayah tanamnya. Mengidentifikasi jenis beras membutuhkan analisis DNA yang menggunakan PCR yang tentunya menghabiskan banyak waktu. Penelitian ini dibuat dengan tujuan membuat suatu sistem identifikasi serta menganalisis pengaruh wilayah tanam terhadap harga beras yang beredar di pasaran. Memanfaatkan pencitraan hiperspektral serta melakukan pemodelan klasifikasi dalam lima jenis beras yang berasal dari wilayah tanam berbeda yaitu Bandung, Indramayu, Subang, Karawang, dan Palembang. Kemudian dua skema variasi pada pemodelan klasifikasi, yaitu PCA – SVM dan CNN. Membandingkan kedua skema tersebut didapatkan akurasi rata – rata untuk pemodelan klasifikasi PCA-SVM sebesar 86.45% dan 97% untuk pemodelan klasifikasi CNN.

Indonesia as one of nations in the world specifically in Asian continent that consumed rice as their main diet. The phenomena led rice as a high demanding food in the country and made many people in the country did paddy harvesting in many regions.   However, this did not make all the rice harvested from various regions had the same value in the market.  Then people differentiated rice from where it harvested. Identifying types of rice requires DNA analysis using PCR which is time consuming. This research was made with the aim of creating an identification system and analyzing the influence of the planting area on the price of rice on the market. Utilizing hyperspectral imaging and classification algorithm in five types of rice originating from different planting areas namely Bandung, Indramayu, Subang, Karawang, and Palembang. Then the two variation schemes in classification modeling, namely PCA - SVM and CNN. Along with comparing the two schemes of classification models, the average accuracy obtained for PCA-SVM classification model is 86.45% and 97% for CNN classification model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ariq Fauzan
"ABSTRACT
Umumnya untuk membedakan antara lidah perokok dan lidah bukan perokok adalah dengan melihat secara visual yang dilakukan oleh praktisi medis dan masih bersifat invasif. Dalam penelitian ini, sistem pengenalan lidah perokok dibangun dengan menggunakan teknik pencitraan hiperspektral dengan rentang spektrum panjang gelombang VNIR Visible Near Infrared berbasis kombinasi ciri spektral dan ciri tekstur. Tujuan penelitian ini adalah membangun sistem pengenalan lidah perokok berbasis kombinasi ciri spektral dan ciri tekstur untuk meningkatkan nilai akurasi pada sistem pengenalan lidah perokok yang berbasis ciri spektral saja. Ciri spektral yang digunakan adalah nilai reflektansi yang didapat langsung dari ROI Region of Interest citra lidah, sedangkan untuk ciri tekstur yang digunakan adalah nilai energi, homogenitas, korelasi, dan kontras yang didapat pada metode ekstraksi ciri GLCM Gray level Co-occurence Matrix. Kedua ciri tersebut dikombinasikan sebagai input yang digunakan pada tahapan seleksi ciri dengan metode PLS Partial Least Square, yang kemudian akan diklasifikasikan menggunakan metode SVM Support Vector Machine. Hasil klasifikasi SVM kemudian dilakukan validasi dengan menggunakan metode k-cross validation. Nilai Akurasi yang didapat dari hasil klasifikasi SVM dengan kombinasi ciri spektral dan ciri tekstur di 4 bagian lidah, lebih baik dibandingkan dengan nilai akurasi yang didapat dari hasil klasifikasi SVM dengan ciri spektral saja, dengan kenaikan akurasi sebesar 1,19 untuk lidah bagian anterior, 3,35 untuk lidah bagian posterior, 7,95 untuk lidah bagian lateral A, dan 1,02 untuk lidah bagian lateral B.

ABSTRACT
Generally, to differentiate between smoker 39s tongue and non smoker 39s tongue is by doing an eye examination, which is invasive and performed by medical practitioners. In this research, smoker 39s tongue recognition system is built by using hyperspectral imaging technique with range of VNIR wavelength spectra, which is based on a combination of spectral features and texture features. The aim of this study is to built smoker 39s tongue recognition system based on a combination of spectral features and texture features to increase the value accuracy of smoker 39s tongue recognition system based on its spectral features only. The spectral features used are the reflectance value obtained from ROI Region of Interest from tongue images, while the texture characteristics used are the energy value, homogenity, correlation, and contrast obtained from extraction method of GLCM Gray Level Co occurence Matrix features. Both features are combined as an input used in the feature selection stage by using PLS Partial Least Square method, which then will be classified by using SVM Support Vector Machine method. After that, the SVM classification result will be validated by using k cross validation method. The value accuracy which is obtained from SVM classification result, by combining the spectral features and the texture characteristics in four regions of tongue, is better than the value accuracy from SVM classification result with spectral features only, with an accuracy increase of 1.19 for anterior region of tongue, 3.35 for posterior region of tongue, 7.95 for lateral A region of tongue, and 1,02 for lateral B region of tongue."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sella Oktaviani Sulistya
"ABSTRAK
Kandungan madu dibangun dari kadar gula yang tinggi. Salah satu parameter kualitas madu dapat dilihat dari kandungan gula yang terkandung didalamnya. Oleh karena itu, diperlukan sistem untuk memprediksi kandungan gula tambahan sebagai salah satu parameter keaslian madu dan dapat digunakan untuk mengklasifikasikan madu asli dengan madu palsu. Citra madu diperoleh dengan menggunakan mode transmitansi dalam kisaran panjang gelombang VNIR 400 - 1000 nm. Sistem yang lengkap terdiri dari kamera Hiperspektral pada kanal 224, slider, lampu halogen 150 W dan diffuser cahaya. Metode pengolahan data yang dilakukan ialah koreksi gambar, segmentasi, ekstraksi fitur, r fitur, model regresi, dan model klasifikasi. Partial Least Square Regression (PLSR) digunakan sebagai reduksi fitur dan model regresi untuk analisis kuantitatif berdasarkan profil transmitansi madu. Soluble Solid Content (SSC) diukur menggunakan Digital Refractometer Pocket Hand Held sebagai data referensi. Principal Component Analysis (PCA) digunakan sebagai reduksi fitur dan Support Vector Machine (SVM) digunakan untuk mengklasifikasikan madu asli dengan madu palsu. Lima jenis madu dari produsen yang sama digunakan sebagai sampel madu. Gula buatan ditambahkan ke madu asli untuk menghasilkan 6 varian Soluble Solid Content. Hasil RMSE dan R2 untuk data tes masing-masing ialah 2,33 dan 0,84. Hasil yang didapatkan dari data tes untuk model klasifikasi ialah berupa akurasi sebesar 88,9%, Misclassification Rate (MR) sebesar 12%, False Positive Rate (FPR) sebesar 4%, dan False Negative Rate (FNR) sebesar 5%. Berdasarkan hasil tersebut, sistem yang diusulkan dapat digunakan sebagai metode alternatif untuk memprediksi SSC dan mengklasifikasikan madu asli dan madu palsu dengan akurasi yang sangat baik.


ABSTRACT

Honey content is constructed by a high sugar content.  One parameter of the honey qualities can be seen from the sugar contained in it. Therefore, a system is needed to predict additional sugar content as one of the authenticity parameters of honey and can be used to classify original honey and adulterant honey. The honey image is obtained using the transmittance mode in the VNIR wavelength range of 400 - 1000 nm. The complete system consists of a Hyperspectral camera on 224 band, slider, 150 W halogen lamp and light diffuser. The processing method performs image correction, segmentation, feature extraction, feature reduction, regression models, and classification models. Partial Least Square Regression (PLSR) was used as a reduction feature and a regression model for quantitative analysis using the honey transmittance profile. Soluble Solid Content (SSC) is measured using Digital Refractometer Pocket Hand Held as reference data. Principal Component Analysis (PCA) is used as a feature reduction and Support Vector Machine (SVM) is used to classify the original honey and adulterant honey. Five types of honey from the same producer were used as honey samples. The artificial sugar is added to the original honey to produce 6 variants of Soluble Solid Content. RMSE and R2 results for each test data are 2,33 dan 0,84. The results obtained from the test data for the classification models are 88,9% for the accuracy, 12% for the missclassification rate (MR), 4% for the False Positive Rate (FPR), and 5% for the False Negative Rate (FNR). Based on these results, the system can be used as an alternative method for predicting SSC and classifying original honey and adulterant honey with very good accuracy.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Linda Yunita
"ABSTRAK
Diperlukan suatu sistem yang mampu membantu dokter untuk mendiagnosis seorang pasien perokok atau bukan. Smoker rsquo;s melanosis dapat digunakan sebagai salah satu indikator untuk mengetahui seseorang perokok atau bukan. Penelitian ini memfokuskan pada pembangunan suatu sistem identifikasi perokok secara tidak invasif berbasis pencitraan hiperspektral Hyperspectral Imaging . Sistem yang dikembangkan terdiri atas instrumen akuisisi citra lidah perokok dan algoritma pengolahan citra yang menggunakan ciri spektral dan spasial pada rentang Visible and Near-Infrared VNIR . Rerata intensitas piksel pada suatu rentang spasial digunakan sebagai ciri yang merepresentasikan reflektansi relatif pada panjang gelombang 400-1000 nm. Metode PCA digunakan untuk mereduksi dimensi ciri menjadi lima buah ciri representatif. Metode SVM digunakan untuk mengklasifikasikan ciri menjadi informasi piksel Smoker rsquo;s Melanosis SM dan normal. Pengujian dengan menggunakan 45 sampel yg terdiri dari 20 perokok dan 25 nonperokok dilakukan untuk menguji kinerja sistem yang dikembangkan. Berdasarkan hasil pengujian diperoleh nilai akurasi 97.31 , misclassification rate MR 2.69 , false positive rate FPR 0 , false negative rate FNR 5,83 , sensitivity 94.17 , dan specificity 100 . Secara umum, sistem telah bekerja untuk membantu mendiagnosis seorang perokok.

ABSTRACT
system which could help a doctor to diagnose patient who is smoker or not smoker is needed. Smoker 39 s melanosis could be used as one of indicator to identify someone is a smoker or not. This study focuses on the development of a non invasive system of smoker identification based on hyperspectral imaging. The developed system consists of smoker 39 s image acquisition instrument and image processing algorithm using spectral and spatial characteristics in the Visible and Near Infrared VNIR range. The average pixel intensity at a spatial range is used as a feature that represents the relative reflectance at the wavelength of 400 1000 nm. The PCA method is used to reduce the dimensions features into five representative features. The SVM method is used to classify the feature into Smoker 39 s Melanosis SM and normal pixel information. This experiment was using 45 samples consisting of 20 smokers and 25 nonsmokers. It were perfomed to test the performance of the developed system. The results show that the accuracy is 97.31 , misclassification rate MR is 2.69 , false positive rate FPR is 0 , false negative rate FNR is 5,83 , sensitivity is 94.17 , and specificity is 100 . In general, the system has worked to help diagnose a smoker."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>