Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144492 dokumen yang sesuai dengan query
cover
Junivan Sulistianto
"Perkembangan sel surya saat ini sudah mencapai generasi ketiga yang memiliki tujuan menghasilkan sel surya dengan kinerja tinggi dan biaya produksi rendah. Perovskite merupakan salah satu material yang banyak digunakan untuk membuat sel surya dan termasuk ke dalam kategori sel surya generasi ketiga. Sel surya perovskite pertama kali diperkenalkan pada tahun 2009. Saat ini sel surya perovskite berkembang pesat karena banyak penelitian yang membahas topik tersebut. Akan tetapi, masih ada permasalahan utama pada sel surya perovskite, yaitu kestabilannya. Material perovskite telah diketahui sangat rentan terhadap air termasuk kelembaban yang ada pada lingkungan. Kontak terhadap air atau kelembaban menyebabkan perovskite menjadi terdegradasi dan kinerja sel surya yang dibuat menjadi menurun dalam waktu singkat. Perilaku tersebut berbeda dengan sel surya dengan material silikon yang dapat mempertahankan kinerjanya sampai 25 tahun. Berbagai penelitian untuk meningkatkan kestabilan sel surya perovskite sudah banyak dilakukan. Salah satunya adalah dengan menggunakan mixed halide perovskite seperti CH3NH3PbI3-xClx atau CH3NH3PbI3-xSCNx. Perkembangan sel surya dengan menggunakan mixed halide perovskite sudah banyak dilakukan, tetapi struktur sel surya dan teknik fabrikasi yang digunakan oleh peneliti lain membutuhkan peralatan yang canggih dan material yang mahal. Oleh karena itu, pada tesis ini dilakukan fabrikasi sel surya menggunakan mixed halide perovskite CH3NH3PbI3-xClx dan mixed halide perovskite CH3NH3PbI3-xSCNx pada struktur yang sederhana dan low-cost. Adapun teknik fabrikasi yang digunakan adalah solution deposition dengan spin coating. Optimasi spin coating rate pada masing-masing lapisan sel surya dilakukan untuk menghasilkan sel surya dengan kinerja yang baik. Setelah proses optimasi dan fabrikasi selesai, kinerja antara kedua sel surya mixed halide perovskite CH3NH3PbI3-xClx dan CH3NH3PbI3-xSCNx dibandingkan. Selain itu, dilakukan pengukuran dan analisis kestabilan untuk kedua sel surya. Hasilnya adalah sel surya dengan perovskite CH3NH3PbI3-xClx menghasilkan kinerja tertinggi dengan VOC sebesar 1,16 V; JSC sebesar 4,32 mA/cm2; FF sebesar 0,52; dan efisiensi sebesar 2,92%. Di sisi lain, sel surya dengan perovskite CH3NH3PbI3-xSCNx memiliki kestabilan yang paling baik dengan penurunan nilai efisiensi sebesar 39% dari nilai awal setelah disimpan selama 13 hari.
Solar cell has achieved third generation which has purposes to produce high performance solar cell with low-cost production. Perovskite is one of materials that widely used to produce solar cell and categorized as emerging solar cell or third generation solar cell. First appearance of perovskite solar cell was in 2009. After its first appearance, perovskite solar cell was intensively investigated. However, device stability is a major problem in development of perovskite solar cell. It is worth mentioning that perovskite is susceptible to water even moisture in the environment. Water or moisture can degrade perovskite easily and performance of perovskite solar can degrade in short time. Contrarily, silicon based solar cell can retain its performance for almost 25 years. Various studies have been conducted to improve stability of perovskite solar cell. Mixed halide perovskite is one of subject that have been proposed to improve perovskite solar cell stability. Research about solar cell using mixed halide perovskite is widely reported. However, complex configuration and fabrication using sophisticated equipment usually used in the reported studies. Herein, fabrication of solar cell using mixed halide perovskite CH3NH3PbI3-xClx and CH3NH3PbI3-xSCNx has been conducted using simple and low-cost structure. Solution deposition fabrication method using spin coating was used to fabricate the devices. Optimization of spin coating rate for each layer in perovskite solar cell was performed to provide perovskite solar cell with decent performance. After optimization and fabrication was completed, performance of solar cell with mixed halide perovskite CH3NH3PbI3-xClx and CH3NH3PbI3-xSCNx was evaluated. Furthermore, stability measurement and analysis of the perovskite solar cells also performed. In summary, solar cell with mixed halide perovskite CH3NH3PbI3-xClx exhibit highest performance with VOC of 1.16 V, JSC of 4.32 mA/cm2, FF of 0.52, and efficiency of 2.92%. On the other hand, solar cell with using mixed halide perovskite CH3NH3PbI3-xSCNx has a best stability which only drops its efficiency for 39% from its initial value after 13 days"
2019
T53094
UI - Tesis Membership  Universitas Indonesia Library
cover
Liem Kevin
"Sel surya yang digunakan merupakan sel surya dengan basis perovskite masih memiliki nilai efisiensi 22,7%; nilai tersebut memang bukan nilai efisiensi tertinggi yang didapatkan oleh sel surya. Namun, dapat terlihat perkembangan yang sangat pesat untuk sel surya jenis ini. Berbagai penelitian telah dilakukan untuk meningkatkan efisiensi daripada sel surya jenis perovskite ini, tetapi belum ada yang dapat menetapkan molaritas optimum pada molaritas prekursi perovskite. Oleh karena itu pada penelitian ini, peneliti akan mencari molaritas optimal prekursi perovskite. Bahan perovskite yang digunakan adalah CH3NH3PbI3 yang merupakan campuran daripada garam MAI dan PbCl2. Penelitian yang dilakukan akan memberikan variabel pada molaritas prekursi perovskite. Molaritas prekursi perovskite akan mempengaruhi banyaknya partikel perovskite yang dimiliki suatu lapisan aktif, dan diasumsikan bahwa dengan meningkatnya jumlah partikel pada lapisan aktif, maka nilai arus daripada sel surya akan meningkat. Penambahan partikel yang dimiliki oleh lapisan aktif akan menghasilkan permukaan lapisan yang tidak merata, sehingga kesetimbangan terhadap banyaknya partikel dan ratanya permukaan sebuah lapisan aktif sangat mempengaruhi efisiensi dari sel surya jenis perovskite. Dari hasil uji coba dan pengukuran dapat disimpulkan bahwa dengan meningkatnya molaritas akan menyebabkan turunnya kualitas dari lapisan aktif, sehingga efisiensi sel surya akan menurun. Pada penelitian ini didapatkan bahwa perovskite dengan nilai 0,48 M untuk PbCl2 merupakan hasil terbaik dengan nilai Isc = 0,7 mA; Voc = 1,48 V; FF = 0,365; dan efisiensi = 0,569%. Disamping itu; 0,48 M juga memiliki kurva I-V yang terbaik dan paling ideal untuk bentuk kurvanya

Solar cell is a relatively new source of renewable energy and this technology is still in its development process, especially for perovskite based solar cell (PSC) which use perovskite material as active layer in the cell structure. Perovskite based solar cell has a very good potential to be one of the most efficient solar cells. At the moment, perovskite based solar cell has achieved value of efficiency of 22.7%; this value isn’t the current highest efficiency value that solar cell could achieve. However, a rapid progression for this type of solar cell could be seen. In this research, researcher will find the optimum molarity for perovskite precursors. The perovskite used is of CH3NH3PbI3 material that is made by a mixture of MAI salt and PbCl2. Various experiment have been done to increase perovskite based solar cell molarity, however none of them have actually find the optimum value of perovskite precursors molarity. So in this research will give variables on the molarity of perovskite precursors. It is assumed that with the increase on particle amount on the active layer, then the current value of the solar cell will increase. From the result of the testing and measurement, it could be concluded that with the increase of molarity the quality of the active layer falls and in turn decrease the efficiency of the solar cell. This research shows that the perovskite with 0.5 M PbCl2 achieve the best result with Isc = 0.7 mA; Voc = 1.48 Volt; Fill Factor (FF) = 0.365 M; and efficiency = 0.569% Alongside that, 0.48 M show the best I-V curve model and the closest model to ideal solar cell I-V curve."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Jodie Abraham Isa
"Sel surya berbahan perovskite adalah sel surya generasi ketiga yang menggunakan lapisan aktif berbahan halida organik-inorganik sebagai lapisan penyerap energi matahari yang lalu akan dikonversi menjadi energi listrik. Selama 10 tahun terakhir, telah tercatat sel surya perovskite yang dikembangkan dan di uji di dalam laboratorium sudah mencapai efisiensi 22,11%. Metode trap passivation adalah metode penambahan lapisan pasif pada lapisan aktif untuk memperbaiki unjuk kerja sel surya perovskite dengan membantu meminimalisir adanya trap state pada elektron yang tereksitasi antar lapisan sel surya perovskite. Oleh karena itu, pada Skripsi ini dilakukan analisis pengaruh dari penambahan konsentrasi lapisan pasif dalam bentuk Tetra-ethyl Orthosilicate (TEOS) untuk membandingkan dengan Sampel tanpa penambahan TEOS, serta untuk meningkatkan unjuk kerja sel surya perovskite. Pada Skripsi ini, sebanyak 4 sel telah difabrikasi dengan konsentrasi TEOS sebesar 0% mol; 0,25% mol; 0,3% mol; dan 0,35% mol. Nilai konsentrasi TEOS paling optimal yang didapat pada percobaan ini adalah 0,25% mol dengan nilai rata- rata Voc sebesar 1,23 V; Isc sebesar 9,25 mA; efisiensi sebesar 3,267 % dan FF sebesar 0,506.

Perovskite solar cell (PSC) is a third-generation solar cell in which the active material is formed using an organic-inorganic halide. PSCs have shown rapid development over the past 10 years with an increase of efficiency up to 22.11%. Trap passivation is a method of adding a passivation layer into the active layer that can be employed to prevent charge trap state caused by the non-uniformity at the active cell interlayer surface which can further improve the performance of perovskite solar cells. Therefore, in this thesis, the researcher applied and analyzed the effect of different concentration levels of a passivation layer in a form of tetraethyl orthosilicate (TEOS); 0%; 0.25%; 0.3%; 0.35%; towards the performance of perovskite solar cells as well as a comparison to the Sample that didn’t employ the TEOS solution. In this research, a best average result is obtained with 0.25% mol of applied TEOS additive into the perovskite active layer with Voc, Isc, efficiency, and FF value of 1.23 V, 9.25 mA, 3.267% and 0.506 respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Celine Mega Alma
"Sel surya merupakan komponen elektronik yang dapat mengkonversi energi cahaya menjadi energi listrik. Perkembangan sel surya sudah sampai pada generasi ketiga, generasi ini terdiri dari dye-sensitized solar cell (DSSC), organic photovoltaic (OPV), quantum dot (QD) photovoltaic, dan perovskite photovoltaic. Sel surya perovskite sendiri telah memberikan peningkatan dalam waktu yang singkat dalam efisiensi konversi energi yaitu dari 3,81% pada tahun 2009 menjadi 25,2% pada tahun 2020. Lapisan penghantar elektron TiO2 merupakan bagian yang sangat diperlukan untuk meningkatkan performa sel surya perovskite. TiO2 merupakan material yang paling banyak digunakan karena porositasnya yang tinggi, kekuatan pengoksidasi yang kuat, tidak beracun dan stabilitas jangka panjang. Aktifitas fotokatalisis TiO2 bergantung pada struktur pori, luas permukaan, ukuran kristal, dan struktur fasa yang dapat dibentuk dengan penerapan suhu kalsinasi. Perbedaan suhu kalsinasi TiO2 dengan prekursor Ti berupa Titanium trichloride akan diteliti pengaruhnya terhadap unjuk kerja dari sel surya perovskite yang dihasilkan, yaitu pada suhu 175℃, 200℃, dan 225. Hasil dari skripsi ini, unjuk kerja sel surya perovskite terbaik adalah sel surya perovskite dengan suhu kalsinasi TiO2 sebesar 175℃ dengan unjuk kerja yang dihasilkan adalah VOC sebesar 2 volt; ISC sebesar 0,98 µA; dan fill factor sebesar 0,838.<

Solar cells are electronic components that can convert energy of light directly into electricity. The development of solar cells has reached the third generation, this generation consists of dye-sensitized solar cells (DSSC), organic photovoltaic (OPV), quantum dot (QD) photovoltaic, and perovskite photovoltaic. Perovskite solar cells themselves have provided a short-term increase in energy conversion efficiency from 3% in 2009 to 25.2% in 2020. TiO2 electron-conducting layers are indispensable to improve the performance of perovskite solar cells. This mesoporous material has been extensively studied and widely applied due to its high porosity and large specific surface area. TiO2 is the most widely used material due to its high porosity, strong oxidizing power, non-toxicity and long-term stability. The photocatalytic activity of TiO2 depends on the pore structure, surface area, crystal size, and phase structure that can be formed by applying the calcination temperature. The difference in calcination temperature of TiO2 with Ti precursor in the form of Titanium trichloride will be investigated for its effect on the performance of the resulting perovskite solar cells at temperatures of 175℃, 200℃, and 225℃. The results of this thesis, the best perovskite solar cell performance is a perovskite solar cell with a TiO2 calcination temperature of 175℃ and the resulting performance is a VOC of 2 volts; ISC of 0.98 µA; and fill factor of 0.838."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Marshall Christian
"Karakteristik dari lapisan nanokomposit TiO2/rGO sebagai lapisan kompak sel surya perovskite telah diamati. Lapisan ini berhasil dideposisikan di atas substrat kaca konduktif fluorine-doped tin oxide (FTO) dengan variasi konsentrasi TiO2 sebesar 0,3125 M, 0,625 M, dan 0,9375 M dan variasi persen volume rGO dalam pelarut 0,4% vol., 0,5% vol., dan 0,6% vol. rGO. Proses kalsinasi untuk setiap variasi konsentrasi TiO2 nanopartikel dilakukan pada temperatur 450°C selama 90 menit dan hal yang sama dilakukan untuk kalsinasi lapisan nanokomposit TiO2/rGO. Lapisan perovskte yang digunakan pada penelitian ini menggunakan campuran antara metil amunium iodida (MAI), PbCl2 dan ZnCl2 yang dilarutkan dalam DMSO. Pengaruh dari konsentrasi TiO2 nanopartikel dan persen volume rGO diamati dengan field emission scanning electron microscope (FE-SEM) untuk melihat morfologi dan ukuruan butir, sedangkan sifat kristalinitas dan fasa yang terbentuk diamati menggunakan difraksi sinar-X (XRD).
Pengujian terhadap efisiensi juga dilakukan menggunakan I-V analyzer. Morfologi butir menunjukkan bahwa setiap kenaikan konsentrasi TiO2 membuat densitas TiO2 semakin tinggi dan persebaran butir lebih merata pada semua area. Fasa yang terbentuk menunjukkan adanya fasa anatase dan rutile yang merupakan fasa utama dalam TiO2 P25 Degussa. Untuk morfologi nanokomposit TiO2/rGO, terlihat bahwa pada persen volume 0,4% persebaran rGO terlihat namun sangat tipis dan kurang merata pada seluruh bagian, pada 0,5% vol. rGO terlihat bahwa persebaran rGO pada celah antarpartikel TiO2 terdistribusi merata, dan pada 0,6% vol. rGO terlrihat bahwa rGO menutupi sebagian besar lapisan TiO2. Hasil pengujian efisiensi yang didapatkan menunjukkan bahwa hasil efisiensi terbesar didapatkan pada konsentrasi 0,3125 M dan 0,5% vol. rGO dengan efisiensi sekitar 3,4216%.

Characteristics of TiO2/rGO nanocomposite layers as compact layers of perovskite solar cells have been observed. This layer was successfully deposited on a fluorine-doped tin oxide (FTO) conductive glass substrate with variations in TiO2 concentrations of 0.3125 M, 0.625 M, and 0.9375 M and variations in volume percent of rGO in solvents 0,4 vol%, 0,5 vol%, and 0.6 vol%. rGO. The calcination process for each variation of TiO2 nanoparticle concentration was carried out at a temperature of 450°C for 90 minutes and the same was done for the calcination of the TiO2/rGO nanocomposite layer. The perovskte layer used in this study uses a mixture of methyl amunium iodide (MAI), PbCl2 and ZnCl2 which are dissolved in DMSO. The effect of TiO2 nanoparticle concentration and rGO volume percent was observed by emission scanning electron microscope field (FE-SEM) to see the morphology and grain size, while the crystallinity and formed phases were observed using X-ray diffraction (XRD).
Testing of efficiency is also done using an I-V analyzer. Grain morphology showed that every increase in TiO2 concentration made the TiO2 density higher and grain distribution more evenly distributed in all areas. The phase formed shows the presence of anatase and rutile phases which are the main phases in Degussa P25 TiO2. For the morphology of TiO2/rGO nanocomposite, it is seen that in the volume percent of 0.4% the distribution of rGO is visible but very thin and less evenly distributed in all parts, at 0.5 vol%. rGO shows that the distribution of rGO in the interparticle gap of TiO2 is evenly distributed, and at 0.6 vol%. rGO is concerned that rGO covers most layers of TiO2. The efficiency test results obtained show that the greatest efficiency results were obtained at concentrations of 0.3125 M and 0.5 vol%. rGO with efficiency of around 3.4216%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Albertus Bramantyo Hartanto
"Perovskite solar cell (PSC) adalah tipe sel surya yang memanfaatkan material perovskite sebagai pembangkit electron dan hole ketika sinar datang masuk ke dalam PSC. Selama ini, pengembangan divais PSC umumnya menggunakan material TiO2 sebagai electron transport material (ETM) karena kemampuan TiO2 untuk menghasilkan efisiensi PSC yang tinggi. Akan tetapi, material TiO2 memiliki keterbatasan berupa pemrosesan pada suhu tinggi yang dapat mencapai 500 °C, sehingga membatasi jenis substrat yang dapat digunakan.
Oleh karena itu, pada penelitian ini, digunakan ZnO nanorod (NR) sebagai ETM. Keunggulan material ZnO adalah mobilitas electron yang lebih tinggi dari TiO2 serta energy bandgap ZnO yang hampir serupa dengan TiO2, sehingga short-circuit current density (JSC) yang terbangkitkan bernilai tinggi.
Fabrikasi ZnO NR dilakukan dengan 2-steps method, yaitu pendeposisian seed layer dan diikuti dengan penumbuhan ZnO NR dengan teknik waterbath. ZnO NR ditumbuhkan dengan dua sumber zinc yang berbeda, zinc acetate (ZA) dan zinc nitrate (ZN), dengan waktu penumbuhan (t) yang divariasikan pada waktu 0, 15, 60, 90, dan 120 menit. ZnO NR dengan ketebalan yang berbeda-beda berhasil didapatkan dengan ketebalan terkecil pada 0,1 µm dan ketebalan terpanjang pada 2 µm. Fabrikasi perovskite dilakukan dengan teknik 1-step spin coating yang mencampurkan bahan lead iodide (PbI2) dan methylammonium iodide (MAI) pada satu larutan. Beberapa langkah pengoptimisasian diambil untuk memastikan lapisan perovskite yang terbentuk menutupi seluruh permukaan ZnO NR. Multiwalled carbon nanotube (MWCNT) dikenakan di atas lapisan perovskite dengan metode doctor blading sebagai hole transport material (HTM). Lapisan plastik yang diletakkan di atas perovskite digunakan sebagai insulator dan masking untuk mengisolasi perovskite dari pengaruh uap air. Untuk menganalisa efek ketebalan dan ukuran crystallite dari ZnO, dua sumber ZA dan ZN digunakan untuk fabrikasi divais PSC.
Dari hasil fabrikasi, didapatkan bahwa PSC dengan HTM berupa MWCNT dan pemberian lapisan plastik sebagai insulator memberikan JSC dan efisiensi yang lebih tinggi pada nilai 5,3409 mA/cm2 dan 0,3322 %. MWCNT berfungsi sebagai lapisan pelindung untuk perovskite serta mempercepat transfer hole sebagai akibat dari konduktivitas MWCNT yang tinggi. Nilai JSC tertinggi sebesar 6,18 mA/cm2 didapatkan pada PSC dengan ketebalan ZnO NR sekitar 100 nm dan ukuran crystallite sebesar 19,29 nm. Kurva yang menggambarkan JSC dan efisiensi sebagai fungsi dari ketebalan ZnO NR memberikan bentuk yang hampir linear dan berbanding terbalik. Bentuk dan karakteristik yang linear juga diberikan pada kurva JSC dan efisiensi sebagai fungsi dari ukuran crystallite tetapi jika setiap kurva dibedakan menurut asal sumber ZA atau ZN. Dengan demikian, ketebalan dan crystallite size dari ZnO NR adalah berbanding terbalik terhadap JSC dan efisiensi PSC.

Perovskite solar cell (PSC) is a type of solar cell that utilizes perovskite material as electron and hole generator when incident light come into contact with the PSC. Until recently, the development of the PSC devices usually employs the use of TiO2 material as electron transport material (ETM) because of the TiO2 material's ability to deliver high PSC outputs. However, TiO2 material faces limitation due to its need to be processed at high temperature that could reach to 500 °C which limits the type of the substrate that can be applied.
In this research, the use of alternative ETM through ZnO nanorod (NR) material was analyzed to replace TiO2 material. The advantage of ZnO material is higher electron mobility than TiO2 material while having similar energy bandgap so that the generated short-circuit current density (JSC) would be higher. The fabrication of ZnO NR was done with 2-steps method of seed layer's deposition and followed with the growth of ZnO NR with waterbath technique. ZnO NR were grown with two different zinc sources, zinc acetate (ZA) and zinc nitrate (ZN), with various growth time (t) at 0, 15, 60, 90, and 120 minutes. ZnO NR with different thickness were obtained with the smallest thickness at 0.1 µm and the largest thickness at 2 µm.
The fabrication of perovskite was done with 1-step spin coating technique which mixed lead iodide (PbI2) and methylammonium iodide (MAI) ingredients into one solvent. Several optimization steps were taken to ensure the formed perovskite layer covered the whole surface of the ZnO NR. Multiwalled carbon nanotube (MWCNT) was applied in top of the perovskite layer with doctor blading method as the hole transport material (HTM). A plastic was put above the perovskite as the insulator and masking to isolate the perovskite from the influence of water vapor. In order to analyze the effects of the thickness and crystallite size of the ZnO, two sources of ZA and ZN were utilized to fabricate the PSC devices.
From the results of the fabrication, it was obtained that PSC with MWCNT as the HTM and application of the plastic layer as the insulator would give higher JSC and efficiency at 5.3409 mA/cm2 and 0.3322 %. MWCNT functioned as a protective layer for the perovskite and fastened the hole transfer because of its high conductivity. The highest JSC was obtained at 6.18 mA/cm2 for PSC with ZnO NR's thickness at around 100 nm and crystallite size at 19.29 nm. A curve that depicted JSC and efficiency as functions of ZnO NR's thickness gave an almost linear shape and inversely proportional. Similar shapes and characteristics were given at the curves of JSC and efficiency as functions of crystallite size as long as the curves were classified based from ZA or ZN sources. It can be concluded that the thickness and crystallite size of the ZnO NR were inversely proportional to the JSC and efficiency of the PSC.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2624
UI - Disertasi Membership  Universitas Indonesia Library
cover
Aga Ridhova
"Karakteristik dari TiO2 nano rosette yang ditumbuhkan secara hidrotermal di atas substrat kaca dengan potensi aplikasi di bidang sel surya perovskite sudah diamati. Nano rosette TiO2 disintesis melalui proses deposisi di atas kaca konduktif fluorine-doped tin oxide FTO secara hidrotermal pada 170 C selama 3, 4, 5, dan 6 jam disertai dengan variasi HCl dan penambahan NaCl. Proses kristalisasi dari nano rosette juga diamati melalui variasi waktu proses kalsinasi pada 450 C selama 0, 30, 60, dan 90 menit. Pengaruh dari reaksi hidrotermal, variasi penambahan prekursor, dan waktu kalsinasi pada pembentukan dan kristalisasi TiO2 nano rosette ini dikarakterisasi menggunakan difraksi sinar-X XRD , sementara morfologi dari nano rosette yang dihasilkan diamati dengan field emission scanning electron microscope FE-SEM.
Pada waktu 3 jam reaksi, proses deposisi melalui nukleasi baru dimulai dan mencapai bentuk yang sempurna setelah waktu 6 jam. Konsentrasi HCl juga memiliki pengaruh yang besar dengan memberikan driving force untuk pembentukan struktur 3D nano rosette. Tanpa adanya asam, TiO2 yang terbentuk hanya berupa partikel nano anatase. Dengan adanya lingkungan asam, bergantung pada konsentrasinya, maka ada kecenderungan pembentukan struktur nano 3D. Konsentrasi optimum untuk pembentukan nano rosette yang sempurna adalah 50. Dalam hal penambahan NaCl, konsentrasi NaCl memiliki pengaruh untuk menahan pertumbuhan ukuran kristal dengan konsentrasi optimal adalah 5. Sementara untuk waktu kalsinasi, waktu kalsinasi selama 90 menit menghasilkan nano struktur dengan kristalinitas paling tinggi dengan menghasilkan struktur kristal rutile P42/mnm. Refinement dari struktur kristal menunjukkan parameter kisi dengan a = 4.558 dan c = 2.939.

The characteristics of nano rosette TiO2 hydrothermally grown on a glass substrate with potential application in perovskite solar cell has been examined. Nano rosette TiO2 was synthesized through deposition on top of a fluorine doped tin oxide glass substrate via hydrothermal reaction at 170 C for 3, 4, 5, and 6 hours with the addition of HCl and NaCl. Crystallization of the nano rosette was achieved through calcination at 450 C for 0, 30, 60, and 90 minutes. The growth mechanism of nano rosette TiO2 was observed by employing the hydrothermal reaction under different acid concentrations. The formation, crystallization, and growth mechanism of the nano rosette TiO2 were characterized using X ray diffraction XRD, whereas the morphology of the nano rosette was examined using a field emission scanning electron microscope FE SEM.
Structural study from X ray also showed that for 3 hours of reaction, the structure has still the tendency of amorphous phase and just completed the crystal structure formation after 6 hours. HCl concentration influence the driving force of the 3D nano rosette formation. The morphological and structural studies under different acid concentration showed that the acid environment has a dominant factor in determining the 3D architecture of the nano rosette TiO2. Under pure water, there was no tendency to form 3D structure but the anatase nano particle TiO2. Under acid environment, on the contrary, depending on the acid concentration, the driving force has the tendency to form 3D structure. The addition of NaCl concentration will inhibit the growth of crystal in nano rosette with optimum concentration of 5 . On the effect of calcination, after 6 hours of reaction, the structure of rutile has been achieved, however, the complete crystallization was just accomplished after 90 minutes of calcination with a structure indexed to rutile P42 mnm with lattice parameters of a 4.557 6 and c 2.940 5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50603
UI - Tesis Membership  Universitas Indonesia Library
cover
Rembianov
"Material karbon menjadi alternatif material yang dapat digunakan sebagai elektroda pada sel surya perovskite. Karbon memiliki keberagaman pada jenis alotropinya berdasarkan ikatan atom. Namun, hingga saat ini belum ada penelitian penggunaan karbon aktif yang berasal dari material biomassa sebagai elektroda pada sel surya perovskite. Pada riset ini, karbon aktif yang digunakan berasal dari arang batok kelapa. Ukuran partikel dari karbon aktif berbentuk bubuk, yaitu 30 mikrometer mesh 500 dan 15 mikrometer (mesh 1000) serta rentang waktu pembuatan elektroda karbon aktif akan diteliti pada skripsi ini untuk mengetahui unjuk kerja sel surya perovskite yang menggunakan karbon aktif arang batok kelapa sebagai elektrodanya dengan metode yang digunakan adalah powder pouring. Perbedaan jenis prekursor titanium Ti juga akan diteliti pengaruhnya terhadap unjuk kerja dari sel surya perovskite yang dihasilkan. Prekursor Ti yang digunakan untuk membentuk lapisan penghantar elektron TiO2 pada penelitian ini adalah Titanium Isopropoxide TTIP dan Titanium Diisopropoxide Bis Acetylacetonate TTDB dengan metode yang digunakan spin coating dan annealing. Hasil dari skripsi ini, unjuk kerja sel surya perovskite terbaik adalah sel surya perovskite yang menggunakan prekursor TTIP pada lapisan penghantar elektron TiO2 dan elektroda karbon aktif dengan ukuran partikel mesh 1000 serta pembuatan elektroda dilakukan pada hari yang sama dengan proses fabrikasi dengan unjuk kerja yang dihasilkan adalah VOC sebesar 1,28 volt; ISC sebesar 8,04 mA; fill factor sebesar 0,512; dan efisiensi sebesar 2,85%.

Carbon can be an alternative material as the electrode of perovskite solar cells (PSCs). According to the different atom bonded, there are several allotropes of carbon which makes carbon as the diversity material. However, there is no research that uses activated carbon derived from biological materials as the electrode of PSCs. In this research, the activated coconut shell charcoal will be used as the electrode of PSCs. Effect of the particle size of coconut shell charcoal which is 30 micrometer mesh 500 and 15 micrometer mesh 1000, as well as the lifespan of the activated carbon based electrode, towards the performance of PSCs, was investigated. The method in depositing activated carbon is powder pouring. This research also investigated the effect of Ti precursors for the TiO2 based electron transport layer. Ti precursors that used in this research consists of Titanium Isopropoxide TTIP and Titanium Diisopropoxide Bis Acetylacetonate TTDB. The best performance of PSCs in this research is the PSCs that use TTIP precursor for the TiO2-based electron transport layer, the particle size of the activated carbon-based electrode is mesh 1000, and the lifespan of the activated carbon based electrode is 0 days. The device produced VOC of 1.28 volt; ISC of 8.04 mA; fill factor of 0.512; and efficiency of 2.85%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fath Muhammad Hendrazid
"Sel surya berbasis perovskit adalah teknologi fotovoltaik terkemuka dan kompetitif dengan efisiensi melebihi 23%, mereka memiliki banyak sifat yang diinginkan. Di sini kita mengeksplorasi kemampuan putar celah pita (MA) Pb (Ix-1Brx) 3 perovskit. Dengan memvariasikan komposisi halida 0 x 1, disintesis dengan proses spin coating berbasis solusi. Karakterisasi bahan film tipis dengan UV-Vis dan Photoluminescence menunjukkan peningkatan celah pita dari 1.5eV menjadi 2.3eV. Jsc dan Voc terlihat meningkat dengan meningkatnya konsentrasi bromida. Efisiensi terbesar yang dicapai adalah 8%, untuk komposisi (MA) Pb (I0.2Br0.8) 3. Telah diamati bahwa waktu anil yang lebih lama menyebabkan penurunan celah pita, yang mungkin mengindikasikan pembentukan perovskit yang kaya iodida di kemudian hari. Oleh karena itu, kami berspekulasi bahwa waktu anil yang optimal dan lebih lama sangat penting untuk mencapai perovskit yang mengkristal sepenuhnya, terutama untuk perovskit yang kaya iodida. Simulasi komputer menggunakan kode MATLAB yang disesuaikan dilakukan untuk mengevaluasi hasil optik sel surya tandem perovskit dan kinerja perangkat, menggunakan kombinasi celah pita tinggi MAPbBr3 dan celah pita rendah MAPbI3. Pekerjaan yang disorot dalam proyek ini menunjukkan jalan menuju kelayakan sel surya tandem perovskit, efisiensi tinggi dan pilihan biaya rendah untuk sel surya film tipis di masa depan.

Perovskite based solar cells are a leading, competitive photovoltaic technology with efficiencies that exceed 23%, they have many desirable properties. Here we explore the turnability of the bandgap of (MA) Pb (Ix-1Brx) 3 perovskites. By varying halide composition of 0 x 1, were synthesized by a solution-based spin coating process. Characterisation of the thin film materials by UV-Vis and Photoluminescence demonstrated a bandgap increase from 1.5eV to 2.3eV. Jsc and Voc are seen to increase with increasing bromide concentration. The greatest efficiency achieved was 8%, for composition of (MA) Pb (I0.2Br0.8) 3. It was observed that a longer annealing time leads to a decrease in bandgap, which may indicate iodide rich perovskite formation at later times. Therefore, we speculate that an optimal, longer annealing time is critical to achieve fully crystallized perovskite, especially for iodide rich perovskite. Computer simulation using customized MATLAB code was carried out to evaluate perovskite tandem solar cell optical results and device performance, using a combination of high bandgap MAPbBr3 and low bandgap MAPbI3. The work highlighted within this project shows the path to the feasibility of perovskite tandem solar cells, a high efficiency and low-cost option for future thin film solar cells."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Istighfari Dzikri
"Sel surya perovskite menjadi salah satu solusi untuk memenuhi kebutuhan energi Indonesia karena proses fabrikasinya yang mudah serta efisiensinya yang tinggi, telah tersertifikasi mencapai 22,1. Perkembangan efisiensi ini tidak lepas dari peran Hole Transport Layer HTL yang berfungsi untuk mengurangi rekombinasi dan meningkatkan absorpsi sel surya perovskite. Namun, HTL yang umum digunakan, spiro-OMeTAD, memerlukan proses sublimasi yang lama dan berharga mahal, sehingga perlu diteliti sel surya dengan HTL yang dapat difabrikasi dengan mudah dan tersedia secara luas di pasaran seperti CuSCN dan PEDOT:PSS.
Pada Skripsi ini akan dilakukan analisa pengaruh material material Hole Transport Layer pada performa sel surya perovskite. Lapisan HTL divariasikan menjadi CuSCN, PEDOT:PSS, dan juga difabrikasi sel surya tanpa HTL untuk melihat pengaruh penggunaan HTL yang berbeda terhadap performa sel surya perovskite.
Hasil pengukuran Voc dan Isc menunjukkan bahwa sel surya perovskite hasil fabrikasi dengan HTL CuSCN dapat menghasilkan Voc sebesar 0,24 mV; Isc sebesar 1,798 mA; dan FF 0,269 sementara perovskite dengan HTL PEDOT:PSS memiliki Voc sebesar 0,22 mV; Isc sebesar 1,716 mA; dan FF 0,278 sedangkan tanpa HTL menghasilkan Voc sebesar 0,12 mV; Isc sebesar 1,245 mA; dan FF 0,261.

Perovskite solar cell is one of the most promising solutions for satisfying Indonesia rsquo s energy demand because of its simple fabrication processes and high efficiency, certified up to 22,1. Perovskites high effiency is related to the role of HTL, decreasing recombinasing recombination and increasing absorption of perovskite solar cells. However, the commonly used HTL, spiro OMeTAD, is expensive and needs a time consuming sublimation process which calls for a cheaper alternative and materials with easier fabrication process, such as CuSCN and PEDOT PSS.
This Skripsi will use three different HTLs CuSCN, PEDOT PSS, and solar cell without HTL and analyze the effect of using different Hole Transport Layer HTL to the performance of perovskite solar cell.
Measurements of Voc and Isc indicate that the Voc of the cell with CuSCN as the HTL is about 0.24 mV, 1.798 mA for the Isc, with 0.269 FF while Voc of the cell with PEDOT PSS as the HTL is about 0.22 mV, 1.716 mA for the Isc, and 0.278 FF. Perovskite solar cell without HTL has 0.12mV Voc, 1.245 mA Isc and 0.261 FF."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>