Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133937 dokumen yang sesuai dengan query
cover
Syafira Deani Tiaradiba
"ABSTRAK
Dalam proses co-pyrolysis, Polipropilen berfungsi untuk menyingkirkan oksigen sehingga yield fraksi non-polar (non-teroksigenasi) menjadi lebih tinggi. Namun, kemampuan PP untuk menyita oksigen masih rendah karena hemiselulosa dan selulosa terurai sebagian besar pada suhu di bawah 400oC, sedangkan PP sebagian besar di atas 400oC. Oleh karena itu, keduanya hanya memiliki interval suhu dekomposisi secara bersamaan yang kecil untuk memungkinkan interaksi antara bonggol jagung dan PP. Dalam penelitian ini, katalis diperkenalkan pada proses co-pyrolysis untuk mengurangi suhu terendah dekomposisi massa PP menjadi kurang dari 400oC agar meningkatkan interval suhu dekomposisi bersamaan. Katalis zeolit diteliti dengan memvariasikan tipenya yakni alam dan sintetik (beta)​​ yang dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0%:100%, 50%:50%, dan 100%:0%. Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500oC, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 250 gram. Hasil penelitian ini menunjukkan terdapat pengaruh katalis baik zeolit alam maupun zeolit beta terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Dengan catalytic pirolisis, yield bio-oil cenderung menurun untuk semua variasi komposisi. Sebaliknya, yield char dan non condensable gas cenderung meningkat. Sedangkan, komposisi yang dominan dengan adanya katalis ialah alkana pada non polar dan metoksi pada H-NMR polar juga keton pada C-NMR polar. Pada produk bio-oil nonpolar, baik zeolit beta, zeolit alam, dan non katalis memiliki nilai branching index masing- masing yaitu 0,997; 1,052; dan 1,054 yang menunjukkan bio-oil nonpolar memiliki rantai karbon lurus dengan cabang lebih banyak apabila dibadingkan dengan bahan bakar komersial. Selain itu, nilai HHV yang dimiliki bio-oil diatas nilai produk bahan bakar bensin komersial yakni 47,93 untuk zeolit alam dan 47,95 untuk zeolit beta.

ABSTRACT
In the process of co-pyrolysis, Polipropylene serves to get rid of oxygen so that the yield of non-polar (non-oxygenated) fractions becomes higher. However, the ability of PP to confiscate oxygen is still low because hemicellulose and cellulose decompose mostly at temperatures below 400oC, while PP is mostly above 400oC. Therefore, both of them only have small decomposition temperature intervals to allow interaction between corn cobs and PP. In this study, catalysts were introduced in the co-pyrolysis process to reduce the lowest temperature of PP mass decomposition to less than 400oC in order to increase the intervals of concurrent decomposition temperatures. Zeolite catalysts were investigated by varying the types of natural and synthetic (beta) which were carried out at 3 ratios of corncob composition and polypropylene plastic, namely 0%: 100%, 50%: 50%, and 100%: 0%. The slow co-pyrolysis process takes place in a stirred tank reactor, with a final temperature of 500oC, a holding time of 10 minutes, a heating rate of 5oC / minute, and a total feed mass of 250 grams. The results of this study indicate that there are effects of catalysts both natural zeolite and beta zeolite on the yield and composition of bio-oil resulting from slow co-pyrolysis of corncob and polypropylene plastic. With catalytic pyrolysis, bio-oil yield tends to decrease for all variations in composition. Conversely, the yield of char and non-condensable gas tends to increase. Meanwhile, the dominant composition in the presence of a catalyst is alkane for non-polar and metoxy for H-NMR polar also ketone for C-NMR polar. In nonpolar bio-oil products, both beta zeolite, natural zeolite, and non-catalyst have a branching index value of 0.997; 1,052; and 1,054 which shows that non-polar bio-oil has more straight carbon chains with branches must be compared with commercial fuels. In addition, the HHV value of bio-oil above the value of commercial gasoline fuel products is 47.93 for natural zeolite and 47.95 for beta zeolite."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
A`Isyah Fadhillah
"Co-pirolisis termal antara bonggol jagung dan PP pada laju pemanasan rendah telah berhasil memisahkan bio-oil fasa oksigenat dan non-oksigenat secara spontan. Pada co-pirolisis, PP dapat mengambil oksigen dari bio-oil untuk mengkonversi sebagian bio-oil menjadi fasa non-oksigenat sehingga dapat berkontribusi dalam perengkahan PP. Namun, kemampuan PP untuk mengubah oksigen sangat lemah. Pada penelitian ini, zeolit digunakan sebagai katalis pada co-pirolisis bonggol jagung dan PP pada laju pemanasan rendah guna mengurangi energy aktivasi dari pirolisis PP, sehingga akan mengurangi suhu dekomposisi massa PP hingga kurang dari 400 oC. pada penelitian sebelumnya, belum pernah ada katalitik pirolisis menggunakan laju pemanasan rendah untuk meningkatkan yield fase non-oksigenat pada co-pirolisis biomass dan PP. Penelitian ini dilakukan di reaktor berpengaduk dengan laju pemanasan 5 oC/menit dan suhu pirolisis 500 oC. komposisi umpan yang digunakan adalah 0; 50 dan 100%PP. Katalis yang digunakan adalah katalis zeolit alam dan zeolit sintetik ZSM-5 dengan dua rasio Si/Al yang berbeda yaitu 38 dan 70. Penggunaan katalis menghasilkan produk senyawa alifatik seperti metil, metilen dan methin yang tingggi. Dengan penambahan tipe katalis zeolit ZSM-5 produksi dari alilik yang merupaan rantai yang berhubungan dengan alkena berkurang. Apabila dilhat dari kualitas bio-oil, sebagian besar fraksi bio-oil non-polar memiliki nilai HHV yang hampir sama atau sedikit lebih tinggi dari bahan bakar komersial yaitu diesel dan gasoline. Selain itu apabila dilihat dari nilai BI (Branching Index) bio-oil fraksi non-polar menghasilkan rantai karbon lurus dengan cabang yang lebih banyak apabila dibandingkan dengan bahan bakar komersial. Dari perbandingan HHV dan BI, nilai HHV dan BI bio-oil fraksi non-polar lebih mendekati nilai HHV dan BI dari gasoline komersial.

Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. However, the capability of PP pyrolates to sequester oxygen is still low. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate, in order to reduce activation energy of PP pyrolysis and therefore reducing the lowest temperature of PP mass decomposition to less than 400oC. There has been no research previously conducted to employ catalytic co-pyrolysis at low heating rate to improve non-oxygenated phase yield in co-pyrolysis of biomass-plastic. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5oC/min and maximum temperature of 500oC. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. There were two types of zeolite catalysts used in this experiment, natural zeolite and ZSM-5 with two different ratio, 38 and 70. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM-5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated traight carbon chain with higher branches compared to those commercial fuels. From the comparison of HHV and BI value, non-polar phase of bio-oil generate HHV and BI value closer to commercial gasoline."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhri Raihan Ramadhan
"Ko-pirolisis polipropilena dan minyak kelapa sawit memberikan cara pemanfaatan limbah plastik polipropilena. Penelitian ini akan meneliti reaksi ko-pirolisis di dalam reaktor tangki berpengaduk menggunakan katalis ceramic foam ZrO2/Al2O3-TiO2 untuk mengakomodasi ukuran molekul reaktan yang besar. Tujuan penelitian ini adalah untuk mendapatkan pengaruh laju pemanasan dan komposisi rasio umpan plastik polipropilena dari 0, 25, 50, 75, dan 100 % berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk dari ko-pirolisis akan dianalisis menggunakan metode Karl- Fischer, FTIR, GC-MS, C-NMR, dan DEPT 135 untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil dan wax. Terdapat pengaruh laju pemanasan dan rasio umpan polipropilena terhadap jumlah produk dan senyawa kimia di dalam bio-oil. Penggunaan katalis ceramic foam ZrO2/Al2O3-TiO2 mampu meningkatkan kualitas dan yield produk akhir. Sistem pirolisis katalitik laju pemanasan tinggi tidak menunjukkan efek sinergis antara PP dan CPO dalam yield dan komponen non-oksigenat karena fraksi non-oksigenat yang rendah di bio-oil dan yield bio-oil yang rendah. Sistem pirolisis termal menunjukkan efek sinergis yang lebih tinggi antara PP dan CPO terhadap yield bio-oil yang lebih tinggi. Sistem pirolisis katalitik laju pemanasan rendah menunjukkan efek sinergis tertinggi antara PP dan CPO dalam hal jumlah fraksi non-oksigenat dan yield dari bio-oil. Analisis C-NMR dan DEPT-135 dari bio-oil menunjukkan bahwa sistem katalitik dan termal dengan laju pemanasan tinggi memiliki jumlah karbon yang terikat pada oksigen lebih tinggi dibandingkan dengan sistem katalitik laju pemanasan rendah yang menunjukkan efisiensi deoksigenasi yang lebih tinggi.

Co-pyrolysis of polypropylene and crude palm oil gives the benefit of utilizing plastic waste of polypropylene. In the present research, co-pyrolysis reaction in a stirred tank reactor will be investigated using ZrO2/Al2O3-TiO2 ceramic foam catalyst to accommodate the large molecular size of reactants. The objectives are to obtain effects of heating rate and feed composition of polypropylene plastic from 0, 25, 50, 75, and 100 wt.% of total feed weight on yields of co-pyrolysis products and composition of bio-oil. The products were analyzed using Karl-Fischer, FTIR, GC-MS, C-NMR, and DEPT 135 to determine the possible reaction pathway, compound compositions, and chemical bonds in the bio-oil and wax. There is an effect of heating rate and feed composition on the yield and chemical compound of the product. The use of ZrO2/Al2O3-TiO2 ceramic foam catalyst improve the quality and yield of the final product. Catalytic high heating rate pyrolysis showed no synergetic effects between PP and CPO on bio-oil yield and non- oxygenates components due to low non-oxygenates fractions in bio-oil and low bio-oil yield. Thermal pyrolysis showed synergetic effects between PP and CPO on bio-oil yield. Catalytic low heating rate pyrolysis showed high synergetic effects between PP and CPO in terms of the quantity of non-oxygenates fractions in bio-oil and the bio-oil yield. C- NMR and DEPT-135 of bio-oil suggested that catalytic and thermal high heating rate system contained higher amount of carbon bound to oxygen compared to the catalytic low heating rate system which indicated higher deoxygenation efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michaelle Flavin Carli
"Saat ini, sumber bahan bakar utama masih berasal dari bahan bakar fosil, salah satunya adalah avtur, yang ketersediannya masih terbatas dan meningkatkan emisi gas rumah kaca. Kondisi ini mendorong penggantian avtur menjadi bioavtur, yang merupakan salah satu energi berkelanjutan yang ramah lingkungan. Pada penelitian ini, bioavtur disintesis melalui reaksi hidrodeoksigenasi dan perengkahan katalitik dari senyawa model asam oleat menggunakan katalis NiMo/Zeolit. Hidrodeoksigenasi dilakukan pada kondisi operasi yang seragam yaitu pada suhu 375°C, pada tekanan hidrogen 15 bar selama 2,5 jam. Rantai hidrokarbon pada hasil hidrodeoksigenasi yang dianggap masih panjang direngkah kembali melalui reaksi perengkahan katalitik selama 1,5 jam. Reaksi ini dilakukan pada tiga variasi suhu, yaitu 360, 375, dan 390°C. Karakteristik produk cair dibagi menjadi dua macam, yaitu karakteristik kimia, berupa bilangan asam, FTIR, dan GC-MS dan karakteristik fisik, berupa uji densitas dan viskositas. Bioavtur yang telah tersintesis melalui perengkahan katalitik ini telah memenuhi spesifikasi avtur komersial, kecuali bilangan asam dengan suhu optimum pada 375°C. Pada kondisi ini, NiMo/Zeolit mampu melakukan sintesis bioavtur dengan yield 34,77, selektivitas 36,43 dan konversi 84,30. Nilai persentase yield dan selektivitas yang terbilang masih rendah disebabkan oleh kinerja katalis yang belum optimal. Sedangkan konversi yang tinggi, disebabkan oleh cukup tingginya suhu perengkahan katalitik.

Currently, fossil fuels are still the primary source of fuel. As has been known, fossil fuel especially aviation fuel is limited resources and can increase greenhouse gas emissions. This condition encourages avture replacement efforts into bioavtures fuel. In this research, bioavture is synthesized through hydrodeoxygenation and catalytic cracking from oleic acid as model compound using NiMo Zeolite catalyst. Hydrodeoxygenation carried out under operating conditions at temperature of 375°C, under 15 bar pressure and for 2.5 hours. The chain of hydrocarbons from the result of hydrodeoxygenation has been cracked by catalytic cracking reaction for 1.5 hours. Variation operating condition used are 360, 375, and 390°C. The liquid product is tested its chemical characteristic, ie acid number, FTIR and GC MS and its physical characteristics, ie density test and viscosity. Bioavtur that synthesized by catalytic cracking have met the specifications of bioavtur, except the acid number with optimum temperature at 375oC. These conditions with NiMo Zeolite activated led to dominant yield of 34.77 , selectivity of 36.43, and conversion of 84.30. Percentage of yield and selectivity of bioavtur are still low caused by performance of catalyst that is still can not optimum. Whereas, high percentage conversion caused by high temperature used for catalytic cracking."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anissa Clarita
"Minyak kelapa sawit memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena kandungan trigliserida. Indonesia merupakan negara produsen kelapa sawit terbesar di dunia. Selama ini minyak kelapa sawit belum dimanfaatkan secara maksimal khususnya sebagai bahan baku industri. Padahal minyak kelapa sawit dapat dimanfaatkan sebagai energi terbarukan melalui proses slow co-pyrolysis. Dalam penelitian ini, trigliserida yang digunakan dari minyak goreng kelapa sawit. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Tujuan penelitian ini adalah untuk mengetahui pengaruh laju oenambahan plastik polipropilena terhadap yield dan kualitas bio-oil hasil slow co-pyrolysis minyak kelapa sawit. Penelitian ini dilakukan dalam reactor tabung berpengaduk pada suhu 550oC, heating rate 5oC/menit, kecepatan pengaduk 65 RPM dengan laju alir gas nitrogen 550 mL/min. Variasi yang dilakukan berupa penambahan jumlah % massa plastik polipropilena yang akan mempengaruhi yield dan komposisi dari bio-oil yang dihasilkan. Bio-oil dikarakterisasi dengan menggunakan GC-MS, dan FTIR. Efek sinergetik pada pirolisis PP-trigliserida tidak terjadi, sedangkan pada pirolisis PP-bonggol jagung terjadi saat komposisi PP 50% dan 75%. Bio-oil optimum dihasilkan pada komposisi PP 75% baik pada pirolisis PP-trigliserida dan PP-bonggol jagung.

Palm oil has high potential to be developed into bio-oil because of the content of triglycerides. Indonesia is the largest palm oil producer in the world. So far, palm oil has not been fully utilized, especially as an industrial raw material. Even though palm oil can be used as renewable energy through the slow co-pyrolysis process. In this study, the the triglyceride is from palm oil cooking oil. In addition, plastic waste is also abundant in Indonesia, especially polypropylene plastic. The purpose of this study was to determine the effect of the rate of addition of polypropylene plastic on the yield and quality of bio-oil produced by slow co-pyrolysis of palm oil. This research was conducted in a stirred tube reactor at a temperature of 550oC, heating rate of 5oC / minute, stirrer speed of 65 RPM with a nitrogen gas flow rate of 550 mL / min. The variation is in the form of increasing the mass% of polypropylene plastic which will affect the yield and composition of the bio-oil produced. Bio-oil is characterized by using GC-MS, and FTIR. The synergetic effect on PP-triglyceride pyrolysis did not occur, whereas in the pyrolysis of PP-corn hump occurred when the composition of PP was 50% and 75%. Optimum Bio-oil was produced in the composition of PP 75% both in PP-triglyceride pyrolysis and PP-corncobs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfinuha Nabil
"ABSTRAK
Material plastik, seperti polipropilena PP , yang mengandung banyak hidrogen sangat potensial untuk digunakan sebagai sumber hidrogen pada co-pyrolysis bersama biomassa seperti bonggol jagung. Dengan mencampurkan keduanya, akan tercipta suatu efek sinergetik yang akan meningkatkan kualitas bio-oil yang dihasilkan. Investigasi yang mengarah pada fenomena efek sinergetik ini dievaluasi dengan menggunakan reaktor displacement untuk melakukan proses slow co-pyrolysis. Eksperimen yang melibatkan umpan yang didominasi biomassa, yaitu PP < 50 regime 1 , terjadi kontraksi pada reaktor kemudian diikuti dengan tidak berubahnya displacement dari silinder piston, sementara pada pirolisis umpan yang didominasi plastik, yaitu PP ge; 50 regime 2 menunjukkan adanya swelling dan contraction pada reaktor. Pada regime 1, sifat termoplastis tidak muncul pada char, sementara pada regime 2, sifat termoplastis muncul pada char. Eksperimen juga menunjukkan bahwa pada komposisi PP < 37,5 , char masih mengandung senyawa oksigenat, dan pada PP ge; 37,5 , char tidak mengandung oksigen. Sementara itu, pada komposisi PP 75 menunjukkan adanya perpindahan massa oksigen hasil pirolisis biomassa ke lelehan plastik. Hasil semua eksperimen di atas menunjukkan bahwa pirolisis umpan regime 2 mengindikasikan adanya interaksi yang kuat antara hasil pirolisis biomassa dan plastik PP yang mengarah ke efek sinergetik

ABSTRACT
Plastic material, such as polypropylene plastic PP , which has hydrogen content compared to that in biomass, is potential to be used as a hydrogen source for pyrolysis of biomass, such as corncobs. By mixing these two, certain synergistic effect will appear that will improve the quality and quantity of bio oil produced. Investigation of the phenomenon leading to the synergistic effect has been evaluated by using a displacement reactor in the form a tubular batch reactor to perform slow co pyrolysis. Feed compostion was varied at 12.5 , 25 , 37,5 , 50 , 62,5 , 75 , and 87.5 weight of PP . Experiment involving biomass dominated feeds, i.e. PP 50 regime 1 , reactor contracted followed by no displacement of reactor piston, while plastic dominated feeds, i.e. PP ge 50 regime 2 showed swelling and contraction of the reactor. Char in regime 1 showed that thermoplastic properties did not appear on char, while in regime 2, thermoplastic properties did appear on char. Experiment also showed that for PP 37,5 , char still contain oxygenated compounds, while for PP ge 37,5 , char contains no oxygen. Meanwhile, on plastic melt in PP 75 composition showed an oxygen mass transfer to the plastic melt from biomass. The results of all experiments show that co pyrolysis in regime 2 indicates a strong interaction between biomass and plastic leading to synergistic effect. "
2017
S67684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Hosea Widjaja
"Pemanfaatan sampah plastik menjadi biofuel merupakan salah satu keuntungan dari proses co-pyrolysis polipropilena (PP) dan Refined Bleached Deodorized Palm Oil (RBDPO). Penelitian kali ini bertujuan untuk menginvestigasi yield produk final co-pyrolysis (bio-oil yang menyerupai biodiesel) dengan meningkatkan kontribusi PP dan efek loading katalis pada yield co-pyrolysis PP-RBDPO yang rendah (yield sebelumnya 64% menjadi 76% dari keseluruhan massa produk co-pyrolysis) pada penelitian sebelumnya oleh Ramadhan et al. (2021) yang menggunakan katalis ZrO2/Al2O3TiO2 dengan keasaman yang lebih rendah jika dibandingkan dengan katalis Ni/ZrO2SO4 dan juga untuk menyelidiki efek sinergetik co-pyrolysis (efek yang meningkatkan yield dan komposisi bio-oil jika dibandingkan dengan pirolisis PP dan RBDPO secara terpisah). Efek kontribusi PP diuji menggunakan variasi 0, 50, dan 100% massa PP dari total massa feed keseluruhan dan efek loading katalis diuji menggunakan variasi 7, 9, dan 11% massa katalis dari total massa feed keseluruhan. Produk bio-oil kemudian dianalisis menggunakan GC-MS dan FTIR untuk menentukan komposisi dan ikatan kimianya. Sedangkan, katalis Ni/ZrO2SO4 akan dianalisis dengan XRD, TPR, TPD, BET, dan TGA untuk menentukan ukuran, tipe kristal, tingkat keasaman dan kebasaan, interaksi, dan ketahanan suhu katalis. Co-pyrolysis PP-RBDPO terbukti menciptakan efek sinergetik. Loading katalis tertinggi (11%) pada proses co-pyrolysis PP-RBDPO terbukti menghasilkan yield tertinggi (33%) dengan komposisi bio-oil paling baik dan menyerupai biodiesel yang memiliki rantai karbon dengan panjang C9 sampai C23 dengan ukuran yang paling umum sebagai C16 dan bertipe hidrokarbon paraffin
The use of plastic waste into biofuels is one of the advantages of the polypropylene (PP) and Refined Bleached Deodorized Palm Oil (RBDPO) co-pyrolysis process. This study aims to investigate the yield of the final co-pyrolysis product (bio-oil that resembles biodiesel) by increasing the contribution of PP and the effect of catalyst loading on the low yield of PP-RBDPO co-pyrolysis (previous yield of 64% to 76% of the overall mass of the co-pyrolysis product) in the previous study by Ramadhan et al. (2021) which used the ZrO2 /Al2O3TiO2 catalyst with lower acidity when compared to the Ni/ZrO2SO4 catalyst and also to investigate the synergistic effect of co-pyrolysis (effect that increases the yield and composition of bio-oil when compared with PP pyrolysis and RBDPO pyrolysis separately). The PP contribution effect was tested using variations of 0, 50, and 100% PP mass of the total feed mass and the catalyst loading effect was tested using variations of 7, 9, and 11% of the catalyst mass of the total feed mass. The bio-oil product is then analyzed using GC-MS and FTIR to determine its composition and chemical bonds. Meanwhile, Ni/ZrO2SO4 catalysts will be analyzed with XRD, TPR, TPD, BET, and TGA to determine the size, crystal type, acidity and alkalinity levels, interactions, and temperature resistance of the catalyst. PP-RBDPO co-pyrolysis was shown to create a synergistic effect. The highest catalyst loading (11%) in the PP-RBDPO co-pyrolysis process was proven to produce the highest yield (33%) with the best bio-oil composition and resembled biodiesel. which has a carbon chain with a length of C9 to C23 with the most common size as C16 and is of the paraffin hydrocarbon type.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pada penelitian ini digunakan zeolit klinoptiiolit alam sebagai bahan dasar kata|is_ Proses aktivasi di-Iakukan dalam dua cara yang bebeda, yaitu proses pertukaran kation diikuti dengan dealuminasi, Serta proses aktivasi dengan urutan sebaliknya Salah satunya diujikan sebagai katalis sadangkan yang Iain sebagai support untuk katalis ZnOICr2O3 yang penyisipannya dilakukan dengan metode kopresipitasi.
Sebelum dilakukan uji coba pada reaksi dekomposisi n-heksana, dilakukan karakterisasi iuas permukaan, komposisi kation dan kristaIinitas. Uji reaksi dilakukan dengan reaktor unggun tetap (kontinu) pada Iaju alir gas carrier N2 sebesar 30 mllmenit dan berat katalis masing-masing 0,1 gram.
Zeolit klinoptilolit yang proses aktivasinya diawali dengan pertukaran kation, pada reaksi dekomposisi n-heksana memgrikan konversi mulai signifikan pada temparatur reaksi mulai mendakati 450 °C dan menghasilkan sanyawa propena Serta isomamya. Pada suhu 470 °C, konversinya mencapai 10,5%. Sedangkan zeolit kiinoptilolit yang proses aktivasinya diawali dengan dealuminasi, sampel katalis Iebih cepat terdeaktivasi sekalipun memiliki karakter permukaan yang Iebih baik_
Katalis Zn0!Cr2O3!zeo|it menghasilkan konversi yang mulai signitikan pada temperatur reaksi mendekati 400 “C dan mamberikan produk senyawa heksena sarla isomernya. Pada 470 °C, konversinya mencapai 22%."
Fakultas Teknik Universitas Indonesia, 1996
S48893
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>