Penggunaan Biodiesel kelapa sawit sebagai campuran bahan bakar minyak solar semakin meningkat seiring dengan penerapan peraturan pemerintah yang mewajibkan pencampuran biodiesel ke dalam minyak solar sebanyak 20% menjadi biosolar (B-20) pada tahun 2016 dan 30% (B-30) pada tahun 2020. Dilaporkan bahwa penggunaan B-20 menyebabkan penyumbatan pada saringan bahan bakar kendaraan. Penyumbatan disebabkan oleh adanya endapan yang terbentuk dari aglomerasi monogliserida terutama monopalmitin. Adanya endapan ini menurunkan sifat kemudahan alir (flow properties) B-20. Telah dilakukan penelitian untuk memperbaiki flow properties biodiesel dengan penambahan surfaktan Sorbitan Monooleate (SMO). Penambahan SMO pada biodiesel menyebabkan turunnya nilai cold filter plugging point (CFPP) yang dapat menghambat aglomerasi monogliserida. Pada pengujian pengaruh monogliserida terhadap terbentuknya endapan, kadar monopalmitin pada biodiesel divariasikan sebesar 0,4%, 0,5% dan 0,8% massa. Sampel ini dikondisikan pada suhu rendah (160C) selama 24 jam, kemudian dibiarkan pada suhu kamar untuk selanjutnya disaring dan ditimbang endapannya. Semakin tinggi kandungan monogliserida dalam biodiesel, maka semakin banyak endapan yang terbentuk. Penelitian dengan SMO menggunakan biodiesel yang memiliki kandungan monogliserida yang berbeda-beda, yaitu sebesar 0,46% (B-100 A), 0,55% (B-100 B), dan 0,65% massa (B-100 C). Pada setiap biodiesel, penambahan SMO di variasikan 0,1%, 0,5%, dan 1% volume. Penyimpanan sampel biodiesel dikondisikan pada suhu rendah (160C) dan pada suhu ruang (± 270C). Pengaruh SMO terhadap suhu awal pembentukan kristal/wax pada biodiesel dianalisa dengan metode differential scanning calorimetry (DSC), sedangkan pengaruhnya terhadap flow properties dianalisis menggunakan 4 parameter yaitu : viskositas, densitas, titik kabut, dan cold filter plugging point (CFPP). Pengujian dilakukan setiap 1 minggu sekali untuk setiap sampel biodiesel. Penggunaan SMO 0,1% - 1% memperbaiki flow properties dengan menurunkan titik kabut sebesar ± 1,60C dan CFPP sebesar 20C, yang diakibatkan oleh penurunan suhu awal pembentukan kristal dari 10,470C menjadi 6,990C.
The use of palm oil biodiesel as a mixture of diesel oil fuel is increasing along with the application of government regulations that require mixing biodiesel into diesel oil as much as 20% to biodiesel (B-20) in 2016 and 30% (B-30) in 2020. It was reported that the use of the B-20 caused a blockage in the vehicle's fuel filter. Blockage is caused by the presence of deposits formed from agglomeration of monoglycerides, especially monopalmitin. The presence of these deposits decreases the flow properties of B-20. Research has been carried out to improve the flow properties of biodiesel by adding Sorbitan Monooleate (SMO) surfactant. The addition of SMO to biodiesel causes a decrease in the value of cold filter plugging point (CFPP) which can inhibit agglomeration of monoglycerides. In testing the effect of monoglycerides on the formation of deposits, the level of monopalmitin in biodiesel was varied by 0,4%, 0,5% and 0,8% by mass. This sample is conditioned at a low temperature (160C) for 24 hours, then left at room temperature to then filter and weigh the precipitate. The higher content of monoglycerides in biodiesel, the more deposits are formed. Research with SMO uses biodiesel which has different monoglyceride content, which is 0,46% (B-100 A), 0,55% (B-100 B), and 0,65% mass (B-100 C). In each biodiesel, the addition of SMO is varied by 0,1%, 0,5%, and 1% by volume. Storage of biodiesel samples is conditioned at low temperatures (160C) and at room temperature (± 270C). The effect of SMO on the initial temperature of crystal formation / wax on biodiesel was analyzed by the method of differential scanning calorimetry (DSC), while the effect on flow properties was analyzed using 4 parameters: viscosity, density, cloud point, and cold filter plugging point (CFPP). Tests are carried out every 1 week for each biodiesel sample. The use of SMO 0,1% - 1% improves flow properties by decreasing the cloud point by ± 1.60C and CFPP by 20C, which is caused by a decrease in the initial temperature of the crystal formation from 10,470C to 6,990C.
"Pada penelitian ini, dilakukan investigasi karakteristik pelarutan plastic komoditas dalam biodiesel kelapa sawit dan pengaruhnya terhadap sifat biodiesel sebagai bahan bakar. Penelitian dilakukan melalui tiga tahap; (1) uji pendahuluan untuk memilah tipe plastik yang sesuai; (2) eksperimen utama untuk mengamati sifat pelarutan terhadap beberapa parameter, yakni: rasio plastic-biodiesel (0.5 – 2% w/w), temperatur pencampuran (25 – 150 °C), dan kecepatan agitasi (0 – 600 rpm), serta (3) evaluasi sifat laju alir dingin campuran bahan bakar plastik-biodiesel. Pelarutan yang seketika dapat terjadi untuk polistirena (PS), polietilena (PE) and polipropilena (PP) pada suhu 120 °C, 150 °C and 165 °C. Campuran polistirena-biodiesel cenderung untuk membentuk kembali endapan plastik pada suhu ruangan, sehingga pemakaian stabilizing agent (aseton) juga diuji untuk mempertahankan stabilitas campuran. Sifat laju alir dingin bahan yang terbaik adalah dengan penambahan 2% w/w polietilena yang mampu menurunkan titik awan dan titik tuang biodiesel menjadi 7 °C dan 0 °C. Ini adalah perbaikan yang cukup signifikan dari titik awan dan titik tuang biodiesel murni (13 °C dan 6 °C). Secara garis besar, aplikasi semacam ini dapat menjadi solusi gabungan untuk mengatasi kelemahan pada sifat bahan bakar biodiesel sekaligus sebagai upaya penanggulangan sampah plastik yang berlimpah - seturut dengan peribahasa ‘cencang dua segeragai’.
This research project investigated the dissolution characteristics of commodity plastics in palm biodiesel to enhance the fuel properties. The study was conducted in three stages; (1) preliminary testing to screen the suitable types of plastic; and (2) main experiment to assess the dissolution behaviour against few selected parameters, namely: plastic-to-biodiesel ratio (0.5 – 2% w/w), mixing temperature (25 – 150 °C), and agitation speed (0 – 600 rpm), and (3) assessment of plastic-biodiesel cold flow properties. Rapid dissolutions were achievable for polystyrene (PS), polyethylene (PE) and polypropylene (PP) at 120 °C, 150 °C and 165 °C, respectively. Unadulterated polystyrene-biodiesel tended to re-polymerize and precipitate in ambient temperature, which leads to the necessity of a stabilizing agent (acetone) to preserve blend stability. The best stable fuel blend was shown with the incorporation of 2% w/w polyethylene; capable of reducing the cloud and pour point to as low as 7 °C and 0 °C, respectively. It is a noteworthy improvement from 13 °C and 6 °C for neat palm biodiesel. In a wider picture, such application can help overcome the waste plastic pandemic and at the same time enhance palm biodiesel properties – resonating to the expression ‘to kill two birds with one stone’.
"