Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 87949 dokumen yang sesuai dengan query
cover
Gde Ngurah Renaldi Shantika
"Perkembangan luas baterai lithium-ion (LIB) telah menarik banyak minat dari banyak peneliti. Peningkatan khusus penelitian baterai ini dapat dilihat dari LIB yang mulai digunakan dalam sistem grid yang disebut battery energy storage system (BESS). Proyek tesis ini bertujuan untuk menentukan jenis LIB apa yang cocok untuk digunakan dalam sistem jaringan yang berbeda. Untuk memilih jenis LIB mana yang cocok untuk sistem, efisiensi siklus dan mekanisme degradasi LIB harus dipelajari. Saat ini, jenis LIB yang digunakan untuk BESS adalah Lithium Iron Phosphate (LFP) dan Lithium Nickel Manganese Cobalt (NMC).
Terlepas dari kemampuan LFP dan NMC, mekanisme degradasi mereka masih merupakan bagian penting dari batasan BESS. Selain itu, degradasi LFP dan NMC dipengaruhi oleh suhu dan laju arus sehingga peningkatan kedua parameter akan menghasilkan degradasi yang lebih tinggi. Variasi suhu dan laju arus membuktikan bahwa LFP memiliki stabilitas yang unggul dibandingkan NMC, meskipun memiliki kapasitas lebih rendah dari NMC. Oleh karena itu, dapat disimpulkan bahwa LFP lebih cocok untuk sistem bersiklus tinggi, sementara NMC lebih cocok untuk sistem yang memiliki penyimpanan kapasitas tinggi sebagai perhatian utama mereka.

The vast development of lithium-ion batteries (LIB) has gained a lot of interest from many researchers. The particular improvement of LIB research is that LIB is starting to be used in a grid system called battery energy storage system (BESS). This thesis project aims to determine what type of LIB is suitable to be used in different grid systems. To choose which type of LIB that is suitable for the system, the cycling efficiency and the degradation mechanism of the LIB must be studied. Currently, the types of LIB used for BESS are Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt (NMC).
Despite the capability of LFP and NMC, their degradation mechanism is still an essential part of the limitation of the BESS. Additionally, the degradation of LFP and NMC are affected by temperature and current rate (C-rate) such that increasing both parameters will result in higher degradation. The variation of temperature and C-rate proves that LFP has superior stability compared to NMC, despite having lower capacity than NMC. Therefore, it can be concluded that LFP is more suitable for a high cycling system while NMC is more suitable for system which has high capacity storage as their primary concern.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizal Rusita
"Skripsi ini meneliti tentang pengaruh temperatur ambien terhadap karakteristik baterai Lithium ion. Perancangan sistem uji mencakup perancangan pengkondisi temperatur ruangan, perancangan media charge-discharge, perancangan alat ukur tegangan dan arus, serta instalasi alat ukur temperatur dengan menggunakan data acqusition. Baterai yang digunakan sebagai sampel merupakan baterai Lithium ion silinder tipe CGR18650CG dari produsen Panasonic yang memiliki kapasitas tipikal 2250 mAh dan tegangan nominal 3,6 V. Percobaan dilakukan dengan memberikan variasi temperatur ambien pada 25, 45, dan 6 C sesuai standar baterai Panasonic pada saat baterai melakukan proses charging dan discharging.
Hasil percobaan menunjukan bahwa pada temperatur yang lebih tinggi, nilai konduktansi elektrik baterai menurun yang ditandai denga peningkatan resistansi internal baterai sehingga menyebabkan waktu untuk proses charge-discharge menjadi lebih lama dibandingkan dengan kondisi normal. Pemberian tempertatur ambien tinggi menyebabkan potensi atau kemampuan baterai untuk mentransfer kalor ke lingkungan menjadi menurun dan beresiko terhadap timbulnya mekanisme thermal runaway.

This research is about to comprehending the effect of thermal imposition to Lithium ion battery’s characteristic. Testing system contains designing temperature simulator, charge-discharge medium, current and voltage measurer, also installation of temperature measurer using data acquisition. The Panasonic CGR18650CG cylindrical Lithium ion battery is used in this expermient as a battery sample. That type of battery has typical capacity of 2250 mAh and nominal voltage of 3.6 V. Later, the thermal imposition is given at temperature of 25, 45, and 60 C appropriate to the Pnasonic battery standard charge-discharge when the battery is in the charge and discharge condition.
The result of experiment shows that at higher ambient temperature, conductace value of the battery is decrease that implied to the increasing of internal resistance of the battery. Finally, time to exceed maximum charged or discharged condition is also increase. At higher ambient temperature, capability of battery in transfering heat to the surrounding is decrease so that the thermal runaway mechanism may occur.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46671
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adream Bais Junior
"Pemisah pada baterai lithium-ion (LIB) berfungsi sebagai pemisah antara anoda dan katoda untuk mencegah terjadinya arus pendek, namun tetap memungkinkan pergerakan ion elektrolit. Pemisah yang banyak digunakan dalam LIB komersial biasanya berbahan dasar poliolefin. Pemisah baterai yang terbuat dari bahan ramah lingkungan seperti selulosa asetat memiliki sifat mekanik dan termal yang sesuai, tidak beracun, dan hidrofilisitas yang baik. Fokus penelitian ini adalah karakteristik membran pemisah LIB berbahan selulosa asetat yang diproduksi menggunakan Temperature and Non-solvent Induction Phase Separation (N-TIPS) dengan DMSO dan pelarut non-udara, serta penambahan asam sitrat. sebagai agen pengikat silang. Pada penelitian ini yang menjadi fokus utama adalah pada variasi konsentrasi asam sitrat yaitu 0%; 5%; 10%; dan 15%. Hasil penelitian menunjukkan kuat tarik setelah penambahan asam sitrat sebesar 38,543 MPa; 68.291 MPa; 73.093 MPa; dan 68,963 MPa serta elongasi sebesar 5,334%; 8,908%; 6,575%; 7,130%; 50,093% untuk 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Selain itu, konduktivitas ionik membran ini adalah 2,16 × 10-5 S/cm; 2,53 × 10-7 S/cm; 6,63 × 10-9 S/cm; dan 3,91×10-7 S/cm sebesar 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Jika dibandingkan dengan membran Celgard, 4,80 10-6 S/cm, penambahan asam sitrat menurunkan konduktivitas ionik di bawah Celgard. Selanjutnya, membran dengan kinerja terbaik, asam sitrat 10%, memiliki ketahanan termal tertinggi sebesar 3,97%, keterbasahan sebesar 39,26 nM/m, dan porositas sebesar 2,17%.

The separator in a lithium-ion battery (LIB) functions as a separator between the anode and cathode to prevent short circuits, but still allows the movement of electrolyte ions. Separators that are widely used in commercial LIBs are usually polyolefin based. Battery separators made from sustainable materials such as cellulose acetate have suitable mechanical and thermal properties, non-toxicity, and good hydrophilicity. The focus of this research is the characteristics of LIB separator membranes made from cellulose acetate which were produced using a Temperature and Non-solvent Induced Phase Separation (N-TIPS) with DMSO and non-air solvents, as well as the addition of citric acid as a crosslinking agent. In this study, the main focus is on the variation of citric acid concentration, namely 0%; 5%; 10%; and 15%. The result shows a tensile strength after the addition of citric acid with the value of 38.543 MPa; 68.291 MPa; 73.093 MPa; and 68.963 MPa and elongation of 5.334%; 8.908%; 6.575%; 7.130%; 50.093% for 0%; 5%; 10%; and 15% citric acid concentration, respectively. Additionally, the ionic conductivity of these membranes is 2.16 × 10-5 S/cm; 2.53 × 10-7 S/cm; 6.63 × 10-9 S/cm; and 3.91 × 10-7 S/cm for 0%; 5%; 10%; and 15% citric acid concentration, respectively. If compared to Celgard membrane, 4.80 10-6 S/cm, the addition of citric acid lowered the ionic conductivity below Celgard. Furthermore, the best performing membrane, 10% citric acid, has the highest thermal resistance at 3.97%, wettability of 39.26 nM/m, and a porosity of 2.17%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rangga Aji Pamungkas
"Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.

The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagas Wibisono
"Telah dilakukan sintesis dan karakterisasi grafit oksida dari sabut kelapa dengan menggunakan metode Hummer termodifikasi dan diaplikasikan sebagai aditif pada NMC 811 komersil. Penambahan grafit oksida sebanyak 5 wt.% pada NMC 811 dilakukan dengan menggunakan metode solid state. Hasil pengujian NMC 811/grafit oksida dengan mikroskop elektron (SEM) memperlihatkan bahwa butiran grafit oksida telah melapisi NMC 811 secara merata. Fabrikasi sel baterai diawali dengan pembuatan slurry menggunakan NMP 811 yang sudah ditambahkan aditif, Super-P, dan PVDF dengan perbandingan 8:1:1. Slurry yang terbentuk dituangkan pada lembaran Al dan dilakukan proses coating dengan doctor blade dengan ketebalan 15 μm. Hasil coating dipotong dan dilakukan fabrikasi menggunakan coin cell tipe CR2032. Pengujian baterai dilakukan menggunakan cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). Hasil uji EIS menunjukkan bahwa nilai koefisien difusi ion NMC 811/grafit oksida masih dibawah NMC 811 komersil namun lebih baik dibandingkan NMC 811/grafen oksida komersial dengan nilai masing-masing secara berturut-turut 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, dan 2.49x10-13 cm2/s. Hasil uji performa baterai dengan CV menunjukkan sampel NMC 811/grafen oksida memiliki kestabilan reaksi oksidasi dan reduksi yang paling baik dengan ΔE sebesar 0.1 V, kemudian diikuti oleh NMC 811/grafit oksida dengan ΔE sebesar 0.49 V serta NMC 811 komersil dengan ΔE sebesar 0.95V. Hasil dari pengujian yang telah dilakukan menunjukkan bahwa sabut kelapa dapat diolah menjadi grafit oksida dan dapat digunakan untuk meningkatkan kestabilan NMC 811

Synthesis and characterization of graphite oxide from coconut coir via modified Hummer method have been carried out and applied as an additive to commercial NMC 811. The addition of 5 wt.% graphite oxide to NMC 811 was carried out via the solid-state reaction. Examination of NMC 811/graphite oxide using electron microscope (SEM) showed that the graphite oxide had coated NMC 811 homogeneously. Battery cell fabrication begins with the manufacture of slurry NMP 811/graphite oxide, Super-P, and PVDF with a ratio of 8:1:1. The slurry was coated onto Al sheets using a doctor's blade method with a thickness of 15 μm. The obtained result was cut and fabricated using a CR2032 coin cell. The performance of battery was tested using cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). The EIS test results showed that the ion diffusion coefficient of NMC 811/graphite oxide was still below the commercial NMC 811 but better than that of NMC 811/graphene oxide with the values of 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, and 2.49x10-13 cm2/s, respectively. Battery performance test using CV showed that the NMC 811/graphene oxide sample had the best oxidation and reduction reaction stability with ΔE of 0.1 V, followed by NMC 811/graphite oxide with ΔE of 0.49 V and commercial NMC 811 with ΔE of 0.95 V. These results indicate that coconut coir can be processed into graphite oxide and can be used to increase the stability of NMC 811."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk.

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julian Permana
"Seiring dengan perubahan dunia yang sangat cepat, efisiensi dalam mengelola persediaan menjadi hal yang sangat penting, terutama bagi UKM. Ada beberapa sumber daya penting yang dibutuhkan oleh UKM untuk meningkatkan bisnis mereka: sejumlah dana, penguasaan teknologi, dan sumber daya manusia. Robotic Process Automation (RPA) sebagai salah satu teknologi unggulan di Industri 4.0 dapat mengatasi kebutuhan sumber daya manusia untuk melakukan tugas-tugas dalam manajemen persediaan. RPA dianggap sebagai salah satu teknologi modern yang memungkinkan UKM melakukan tugas berulang dengan lebih efisien sehingga menghasilkan kinerja organisasi yang lebih baik. Penelitian ini mengadopsi tahap Inisialisasi dan Implementasi dari The Consolidated Framework for Implementing RPA Project. Data bersumber dari salah satu UKM dalam bisnis kecantikan yang beroperasi di Provinsi Jawa Tengah- Indonesia, dimana bisnis kecantikan dianggap sebagai salah satu sektor yang berkembang pesat saat ini di Indonesia. Ruang lingkup penelitian ini difokuskan pada manajemen persediaan seperti pengecekan stok persediaan, peramalan permintaan produk berdasarkan data historis, membuat rencana pembelian, memesan barang ke vendor melalui email dan menindaklanjuti menggunakan email jika barang yang dipesan belum datang. Temuan penelitian ini menunjukkan bahwa penggunaan RPA dalam manajemen persediaan dapat menghemat banyak biaya yang sebelumnya dianggap sebagai beban. Adanya RPA di perusahaan telah berhasil membantu AuradermA Skin Care dalam mengelola persediaan dengan lancar, mengurangi beban kerja staf dan pada akhirnya memastikan persediaan tidak habis atau berlebihan. Diharapkan penelitian ini memberikan kontribusi dalam bidang RPA karena implementasi RPA belum begitu banyak ditemukan terutama untuk UKM.

State of Charge (SOC) is a condition that states battery charge condition. This condition is important to know to ensure safe battery operating condition. One of the challenge in estimating SOC is that the battery dynamic system. To estimate SOC, battery undergoes characterization process. The Li-Ion battery characterization system monitors voltage across the battery as well as current going to or out of the battery. After the system is assembled, battery will be prepared before characterization using Constant Current Constant Voltage (CCCV) charging. Characterization process starts with battery undergoing discharging and charging process. In this research, Li-Ion battery made from LiNiMnCoO2 is modelled based on second order Thevenin Equivalent Circuit Model. SOC estimation is optimized using Uscented Kalman Filter (UKF). Next, battery undergoes Hybrid Pulse Power Characterization (HPPC) test to obtain ECM parameters. Next, ECM parameters are used as value to be fitted with SOC from Coulomb Counting (CC) with seventh order polynomial method from HPPC result. SOC estimation validation is done using Dynamic Stress Test (DST). The SOC estimation result using UKF is compared to the estimation which doesn’t use UKF. The simulation and experiment result show that UKF algorithm is able to adjust its estimation result when given wrong initial SOC estimation value. The simulated SOC estimation result using UKF is compared with the CC method and reference SOC have Root-Mean Square Error (RMSE) of 0.7 % and Maximum Error (ME) of 9.9 %. The experiment SOC estimation result compared with CC SOC method has RMSE of 2.76 % and ME of 10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>