Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88630 dokumen yang sesuai dengan query
cover
Gde Ngurah Renaldi Shantika
"Perkembangan luas baterai lithium-ion (LIB) telah menarik banyak minat dari banyak peneliti. Peningkatan khusus penelitian baterai ini dapat dilihat dari LIB yang mulai digunakan dalam sistem grid yang disebut battery energy storage system (BESS). Proyek tesis ini bertujuan untuk menentukan jenis LIB apa yang cocok untuk digunakan dalam sistem jaringan yang berbeda. Untuk memilih jenis LIB mana yang cocok untuk sistem, efisiensi siklus dan mekanisme degradasi LIB harus dipelajari. Saat ini, jenis LIB yang digunakan untuk BESS adalah Lithium Iron Phosphate (LFP) dan Lithium Nickel Manganese Cobalt (NMC).
Terlepas dari kemampuan LFP dan NMC, mekanisme degradasi mereka masih merupakan bagian penting dari batasan BESS. Selain itu, degradasi LFP dan NMC dipengaruhi oleh suhu dan laju arus sehingga peningkatan kedua parameter akan menghasilkan degradasi yang lebih tinggi. Variasi suhu dan laju arus membuktikan bahwa LFP memiliki stabilitas yang unggul dibandingkan NMC, meskipun memiliki kapasitas lebih rendah dari NMC. Oleh karena itu, dapat disimpulkan bahwa LFP lebih cocok untuk sistem bersiklus tinggi, sementara NMC lebih cocok untuk sistem yang memiliki penyimpanan kapasitas tinggi sebagai perhatian utama mereka.

The vast development of lithium-ion batteries (LIB) has gained a lot of interest from many researchers. The particular improvement of LIB research is that LIB is starting to be used in a grid system called battery energy storage system (BESS). This thesis project aims to determine what type of LIB is suitable to be used in different grid systems. To choose which type of LIB that is suitable for the system, the cycling efficiency and the degradation mechanism of the LIB must be studied. Currently, the types of LIB used for BESS are Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt (NMC).
Despite the capability of LFP and NMC, their degradation mechanism is still an essential part of the limitation of the BESS. Additionally, the degradation of LFP and NMC are affected by temperature and current rate (C-rate) such that increasing both parameters will result in higher degradation. The variation of temperature and C-rate proves that LFP has superior stability compared to NMC, despite having lower capacity than NMC. Therefore, it can be concluded that LFP is more suitable for a high cycling system while NMC is more suitable for system which has high capacity storage as their primary concern.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizal Rusita
"Skripsi ini meneliti tentang pengaruh temperatur ambien terhadap karakteristik baterai Lithium ion. Perancangan sistem uji mencakup perancangan pengkondisi temperatur ruangan, perancangan media charge-discharge, perancangan alat ukur tegangan dan arus, serta instalasi alat ukur temperatur dengan menggunakan data acqusition. Baterai yang digunakan sebagai sampel merupakan baterai Lithium ion silinder tipe CGR18650CG dari produsen Panasonic yang memiliki kapasitas tipikal 2250 mAh dan tegangan nominal 3,6 V. Percobaan dilakukan dengan memberikan variasi temperatur ambien pada 25, 45, dan 6 C sesuai standar baterai Panasonic pada saat baterai melakukan proses charging dan discharging.
Hasil percobaan menunjukan bahwa pada temperatur yang lebih tinggi, nilai konduktansi elektrik baterai menurun yang ditandai denga peningkatan resistansi internal baterai sehingga menyebabkan waktu untuk proses charge-discharge menjadi lebih lama dibandingkan dengan kondisi normal. Pemberian tempertatur ambien tinggi menyebabkan potensi atau kemampuan baterai untuk mentransfer kalor ke lingkungan menjadi menurun dan beresiko terhadap timbulnya mekanisme thermal runaway.

This research is about to comprehending the effect of thermal imposition to Lithium ion battery’s characteristic. Testing system contains designing temperature simulator, charge-discharge medium, current and voltage measurer, also installation of temperature measurer using data acquisition. The Panasonic CGR18650CG cylindrical Lithium ion battery is used in this expermient as a battery sample. That type of battery has typical capacity of 2250 mAh and nominal voltage of 3.6 V. Later, the thermal imposition is given at temperature of 25, 45, and 60 C appropriate to the Pnasonic battery standard charge-discharge when the battery is in the charge and discharge condition.
The result of experiment shows that at higher ambient temperature, conductace value of the battery is decrease that implied to the increasing of internal resistance of the battery. Finally, time to exceed maximum charged or discharged condition is also increase. At higher ambient temperature, capability of battery in transfering heat to the surrounding is decrease so that the thermal runaway mechanism may occur.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46671
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adream Bais Junior
"Pemisah pada baterai lithium-ion (LIB) berfungsi sebagai pemisah antara anoda dan katoda untuk mencegah terjadinya arus pendek, namun tetap memungkinkan pergerakan ion elektrolit. Pemisah yang banyak digunakan dalam LIB komersial biasanya berbahan dasar poliolefin. Pemisah baterai yang terbuat dari bahan ramah lingkungan seperti selulosa asetat memiliki sifat mekanik dan termal yang sesuai, tidak beracun, dan hidrofilisitas yang baik. Fokus penelitian ini adalah karakteristik membran pemisah LIB berbahan selulosa asetat yang diproduksi menggunakan Temperature and Non-solvent Induction Phase Separation (N-TIPS) dengan DMSO dan pelarut non-udara, serta penambahan asam sitrat. sebagai agen pengikat silang. Pada penelitian ini yang menjadi fokus utama adalah pada variasi konsentrasi asam sitrat yaitu 0%; 5%; 10%; dan 15%. Hasil penelitian menunjukkan kuat tarik setelah penambahan asam sitrat sebesar 38,543 MPa; 68.291 MPa; 73.093 MPa; dan 68,963 MPa serta elongasi sebesar 5,334%; 8,908%; 6,575%; 7,130%; 50,093% untuk 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Selain itu, konduktivitas ionik membran ini adalah 2,16 × 10-5 S/cm; 2,53 × 10-7 S/cm; 6,63 × 10-9 S/cm; dan 3,91×10-7 S/cm sebesar 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Jika dibandingkan dengan membran Celgard, 4,80 10-6 S/cm, penambahan asam sitrat menurunkan konduktivitas ionik di bawah Celgard. Selanjutnya, membran dengan kinerja terbaik, asam sitrat 10%, memiliki ketahanan termal tertinggi sebesar 3,97%, keterbasahan sebesar 39,26 nM/m, dan porositas sebesar 2,17%.

The separator in a lithium-ion battery (LIB) functions as a separator between the anode and cathode to prevent short circuits, but still allows the movement of electrolyte ions. Separators that are widely used in commercial LIBs are usually polyolefin based. Battery separators made from sustainable materials such as cellulose acetate have suitable mechanical and thermal properties, non-toxicity, and good hydrophilicity. The focus of this research is the characteristics of LIB separator membranes made from cellulose acetate which were produced using a Temperature and Non-solvent Induced Phase Separation (N-TIPS) with DMSO and non-air solvents, as well as the addition of citric acid as a crosslinking agent. In this study, the main focus is on the variation of citric acid concentration, namely 0%; 5%; 10%; and 15%. The result shows a tensile strength after the addition of citric acid with the value of 38.543 MPa; 68.291 MPa; 73.093 MPa; and 68.963 MPa and elongation of 5.334%; 8.908%; 6.575%; 7.130%; 50.093% for 0%; 5%; 10%; and 15% citric acid concentration, respectively. Additionally, the ionic conductivity of these membranes is 2.16 × 10-5 S/cm; 2.53 × 10-7 S/cm; 6.63 × 10-9 S/cm; and 3.91 × 10-7 S/cm for 0%; 5%; 10%; and 15% citric acid concentration, respectively. If compared to Celgard membrane, 4.80 10-6 S/cm, the addition of citric acid lowered the ionic conductivity below Celgard. Furthermore, the best performing membrane, 10% citric acid, has the highest thermal resistance at 3.97%, wettability of 39.26 nM/m, and a porosity of 2.17%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
"Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil) kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan adanya impurities elemen S sebesar 8.5 wt. %.
Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu. Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C.
Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak.

Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C.
The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
cover
Rangga Aji Pamungkas
"Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.

The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagas Wibisono
"Telah dilakukan sintesis dan karakterisasi grafit oksida dari sabut kelapa dengan menggunakan metode Hummer termodifikasi dan diaplikasikan sebagai aditif pada NMC 811 komersil. Penambahan grafit oksida sebanyak 5 wt.% pada NMC 811 dilakukan dengan menggunakan metode solid state. Hasil pengujian NMC 811/grafit oksida dengan mikroskop elektron (SEM) memperlihatkan bahwa butiran grafit oksida telah melapisi NMC 811 secara merata. Fabrikasi sel baterai diawali dengan pembuatan slurry menggunakan NMP 811 yang sudah ditambahkan aditif, Super-P, dan PVDF dengan perbandingan 8:1:1. Slurry yang terbentuk dituangkan pada lembaran Al dan dilakukan proses coating dengan doctor blade dengan ketebalan 15 μm. Hasil coating dipotong dan dilakukan fabrikasi menggunakan coin cell tipe CR2032. Pengujian baterai dilakukan menggunakan cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). Hasil uji EIS menunjukkan bahwa nilai koefisien difusi ion NMC 811/grafit oksida masih dibawah NMC 811 komersil namun lebih baik dibandingkan NMC 811/grafen oksida komersial dengan nilai masing-masing secara berturut-turut 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, dan 2.49x10-13 cm2/s. Hasil uji performa baterai dengan CV menunjukkan sampel NMC 811/grafen oksida memiliki kestabilan reaksi oksidasi dan reduksi yang paling baik dengan ΔE sebesar 0.1 V, kemudian diikuti oleh NMC 811/grafit oksida dengan ΔE sebesar 0.49 V serta NMC 811 komersil dengan ΔE sebesar 0.95V. Hasil dari pengujian yang telah dilakukan menunjukkan bahwa sabut kelapa dapat diolah menjadi grafit oksida dan dapat digunakan untuk meningkatkan kestabilan NMC 811

Synthesis and characterization of graphite oxide from coconut coir via modified Hummer method have been carried out and applied as an additive to commercial NMC 811. The addition of 5 wt.% graphite oxide to NMC 811 was carried out via the solid-state reaction. Examination of NMC 811/graphite oxide using electron microscope (SEM) showed that the graphite oxide had coated NMC 811 homogeneously. Battery cell fabrication begins with the manufacture of slurry NMP 811/graphite oxide, Super-P, and PVDF with a ratio of 8:1:1. The slurry was coated onto Al sheets using a doctor's blade method with a thickness of 15 μm. The obtained result was cut and fabricated using a CR2032 coin cell. The performance of battery was tested using cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). The EIS test results showed that the ion diffusion coefficient of NMC 811/graphite oxide was still below the commercial NMC 811 but better than that of NMC 811/graphene oxide with the values of 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, and 2.49x10-13 cm2/s, respectively. Battery performance test using CV showed that the NMC 811/graphene oxide sample had the best oxidation and reduction reaction stability with ΔE of 0.1 V, followed by NMC 811/graphite oxide with ΔE of 0.49 V and commercial NMC 811 with ΔE of 0.95 V. These results indicate that coconut coir can be processed into graphite oxide and can be used to increase the stability of NMC 811."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widya Aryani M
"Pertumbuhan pasar baterai litium-ion menunjukkan trend yang signifikan. Pertumbuhan tersebut memicu akumulasi limbah baterai bekas yang dihasilkan serta menciptakan tantangan dalam pengelolaan limbah. Oleh karena itu dibutuhkan daur ulang baterai bekas yang efisien dan berkelanjutan. Penelitian ini mengeksplorasi penggunaan deep eutectic solvent (DES) berdasarkan asam polikarboksilat untuk memulihkan logam-logam penting, seperti litium (Li), kobalt (Co), nikel (Ni), dan mangan (Mn) dari baterai litium-ion bekas. Dalam penelitian ini digunakan variasi suhu (30oC, 55oC, 80oC), variasi rasio LIB/DES (1g/50ml, 1,5g/50ml, 2g/50ml, dan 2,5g/50ml) dan variasi DES (ChCl:Asam suksinat, ChCL:Asam maleat, dan ChCl:Asam malonat). Pemulihan optimal dicapai dengan menggunakan DES ChCl:Asam maleat, menghasilkan 99,18% Li, 65,36% Co, 94,97% Ni, dan 67,88% Mn pada rasio S/L 1g/50ml pada suhu 80°C dengan pengadukan konstan. Pemodelan kinetik mengungkapkan bahwa kinetika Jander paling baik menggambarkan mekanisme pelindian, menunjukkan proses yang dikendalikan oleh difusi. Perhitungan energi aktivasi pada DES ChCl:Asam maleat menghasilkan Li 38,57 kJ/mol, Co 63,09 kJ/mol, Ni 64,87 kJ/mol, dan Mn 52,64 kJ/mol.

The growth of the lithium-ion battery market is showing a significant trend. This growth triggers the accumulation of used battery waste generated and creates challenges in waste management. Therefore, there is a need for efficient and sustainable recycling of used batteries. This research explores the use of deep eutectic solvent (DES) based on polycarboxylic acid to recover important metals, such as lithium (Li), cobalt (Co), nickel (Ni), and manganese (Mn) from spent lithium-ion batteries. In this study, temperature variation (30oC, 55oC, 80oC), LIB/DES ratio variation (1g/50ml, 1.5g/50ml, 2g/50ml, and 2.5g/50ml) and DES variation (ChCl:Succinic acid, ChCL:Maleic acid, and ChCl:Malonic acid) were used. Optimal recovery was achieved using ChCl:Maleic acid DES, yielding 99.18% Li, 65.36% Co, 94.97% Ni, and 67.88% Mn at an S/L ratio of 1g/50ml at 80°C with constant stirring. Kinetic modeling revealed that Jander kinetics best described the leaching mechanism, suggesting a diffusion-controlled process. Activation energy calculations on DES ChCl:Maleic acid yielded Li 38.57 kJ/mol, Co 63.09 kJ/mol, Ni 64.87 kJ/mol, and Mn 52.64 kJ/mol."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk.

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>