Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61380 dokumen yang sesuai dengan query
cover
Muhammad Alief Meinanda
"

Teknik Neutron Scattering merupakan salah satu teknik yang berperan sangat penting terhadap perkembangannya teknologi baterai lithium-ion, yang dimana teknik ini digunakan untuk menginvestigasi kemampuan penyimpanan energi pada baterai lithium-ion. Pada prinsipnya neutron scattering memanfaatkan neutron yang mampu mendeteksi unsur-unsur yang sangat ringan dan menjadikan suatu kelebihan yang sangat penting pada teknik.neutron scattering. Mengingat pentingnya material penyimpanan energi seperti lithium-ion yang digunakan pada perangkat elektronik sehari-hari maka semakin besar tuntutan untuk membuat dan menemukan material baterai litihum-ion semakin berkembang pada life time, kemampuan cyclic dan stabilitasnya. Penelitian ini dilakukan untuk mempelajari cara penggunaan dan pemanfaatan teknik neutron beam scattering dalam mengidentifikasi struktur crystal dari sampel yang digunakan yaitu anoda ZnO, dengan menggunakan high resollution power diffraction (HPRD) di Badan Tenaga Nuklir Nasional (BATAN). Hasil yang didapat pada posisi 2 theta pada titik 114,32 derajat didapat grid parameter 2,899 yang dimana apabila dibulatkan sangat mendekati grid parameter unsur besi (Fe) yang bernilai 2,866 Angstorm. Namun belum terlihat unsur lain selain besi dikarenakan besarnya intensitas casing besi dari sample coin cell baterai.

 


Neutron Scattering technique is one technique that plays a very important role in the development of lithium-ion battery technology, which is used to investigate the energy storage capabilities of lithium-ion batteries. In principle, neutron scattering utilizes neutrons which are capable of detecting very light elements and making a very important advantage in techniques. Neutron scattering. Considering the importance of energy storage materials such as lithium-ion used in everyday electronic devices, the greater the demand to make and find battery-litihum-ion materials increasingly develops on life time, cyclic ability and stability. This research was conducted to study how to use and use the neutron scattering technique in identifying the crystal structure of the sample used, namely ZnO anode, using high resistance power diffraction (HPRD) at BadaN National Nuclear Power (BATAN).

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahadhim Dary Ismaya
"Lithium-ion batteries (LIBs) are a popular energy storage system, it has high energy density and high specific energy. This characteristic of LIB making it to become a proper energy storage system in electric vehicle, and as the increasing use of electric vehicle, in-depth research about LIB become a trend lately. The aim of this project is to review degradation mechanisms for LIB system that are used in electric vehicles. This is due to the concern of LIB application in electric vehicle as the degradation of LIB can affecting the performance of it, whether its capacity fade or power fade. An extensive literature review has been conducted to gain the performance data of LIB that installed in electric vehicle and to see the past studies that related to degradation mechanisms in LIB.The data collecting of LIB is focusing on its capacity, operating condition, and number of cycles. From there, degradation rate can be calculated and presented in several graphs. These graphs compare the performance of different type LIB that available for electric vehicle. From the result, the two-outstanding performance are shown in Lithium Iron Phosphate (LFP) and Nickel Cobalt Aluminium (NCA) batteries as both of batteries have almost similar in capacity to degradation rate ratio. Each of battery have a slight advantage between another, with LFP battery good at operating under different current rates (c-rates) and NCA battery good at operating under different temperature. The degradation mechanisms that happen to these LIBs that are used in electric vehicle will mostly correlates to temperature. EV batteries have high potential risk to be exposed to environment, and temperature change can accelerate the degradation process in LIB.

Baterai lithium-ion (LIB) adalah system penyimpanan energi yang popular, ia memiliki kepadatan energi dan energi spesifik yang tinggi. Karakteristik LIB ini membuatnya menjadi system penyimpanan energi yang tepat dalam kendaraan listrik, dan seiring dengan meningkatnya penggunaan LIB pada kendaraan listrik, penelitian tentang LIB menjadi tren belakangan ini. Tujuan proyek ini adalah untuk meninjau mekanisme degradasi untuk system LIB yang digunakan pada kendaraan listrik. Hal ini disebabkan oleh kekhawatiran penggunaan LIB pada kendaraan listrik karena degradasi LIB dapat mempengaruhi kinerja kendaraan, baik penurunan kapasitas maupun daya yang diperoleh dari LIB. Tinjauan literature telah dilakukanuntuk mendapat data kinerja LIB yang dipasang pada kendaraan listrik dan untuk melihat kembali studi yang telah dilakukan oleh peneliti sebelumnya yang terkait dengan mekanisme degradasi pada LIB. Pengumpulan data LIB berfokus pada kapasitas, kondisi operasi, dan jumlah siklusnya. Selanjutnya, laju degradasi dapat dihitung dan disajikan dalam beberapa grafik. Grafik ini membandingkan kinerja berbagai jenis LIB yang tersedia untuk kendaraan listrik. Hasilnya, terdapat dua tipe LIB yang memiliki kinerja luar biasa yang ditunjukkan dalam baterai Lithium Iron Phosphate (LFP) dan Nickel Cobalt Aluminium (NCA) karena kedua baterai memiliki kapasitas yang hampir sama dengan rasio laju degradasi. Masing-masing baterai memiliki sedikit keunggulan di antara yang lain, dengan baterai LFP bagus untuk beroperasi di bawah laju arus yang berbeda (c-rates) dan baterai NCA bagus untuk beroperasi di bawah suhu yang berbeda. Mekanisme degradasi yang terjadi pada LIB ini yang digunakan dalam kendaraan listrik sebagian besar akan berkorelasi dengan suhu. Baterai kendaraan listrik memiliki potensi risiko tinggi untuk terpapar lingkungan, dan perubahan suhu dapat mempercepat proses degradasi di LIB. "
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Yunianto Putro
"Telah dilakukan sintesis katoda LiFePO4 dengan penambahan variasi Vanadium sebagai bahan aditif. Dalam penelitian ini bubuk LiFePO4 dibuat dengan LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri melalui proses hidrotermal. Pada tahapan berikutnya, dilakukan pencampuran pelarut dan bubuk H4NO3V sebagai variasi dari katoda aktif bahan dan karbon hitam sebanyak 4% wt. Selanjutnya dilakukan proses hidrotermal untuk membentuk LiFePO4 murni dengan warna abu-abu terang. Setelah proses sintering, didapatkan hasil berwarna abu-abu gelap sebagai karakteristik partikel LiFePO4. Bahan katoda LiFePO4 murni disintesis pada suhu 180 °C dalam autoclave dengan waktu penahanan selama 20 jam dan selanjutnya disintering 750 °C dengan penahanan selama 4 jam. Hasil sintesis dikarakterisasi menggunakan analisis termal (STA), difraksi sinar-X (XRD), mikroskop elektron (SEM), dan sifat listrik melalui spektroskopi impendansi (EIS). Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 dari uji STA adalah antara 653,8 – 750,0 °C. Hasil XRD menunjukkan LiFePO4 memiliki struktur olivin dengan grup ruang ortorombik, sementara hasil SEM menunjukkan bahwa LiFePO4 berbentuk bulat dan teraglomerasi. Hasil uji EIS menghasilkan nilai impedansi atau hambatan sebesar 158 Ω untuk LiFePO4 murni hasil sintesis dan 59 Ω untuk LiFePO4 dengan doping vanadium 5%.

Vanadium-doped LiFePO4 used as cathode for lithium ion battery has been suscessfully synthesized. In this work, LiFePO4 was synthesizwed from LiOH, NH4H2PO4, and FeSO4.7H2O at stoichiometric amount through a hydrothermal method. Vanadium was added in the forms of H4NO3V powder at concentration variations and 4% wt carbon black. The hydrothermal process has been successfully carried out to form a pure LiFePO4 with a light gray color. After the sintering process, a dark gray powder as the characteristics of LiFePO4 particles were obtain. Pure LiFePO4 was synthesized at 180 °C in an autoclave for 20 hours and was sintered at 750 °C for 4 hours. The craharacterization includes thermal analysis (STA), X-ray diffraction (XRD), electron microscope (SEM), and electrical impendance spectroscopy (EIS). The STA results showed that LiFePO4 formation temperature is at 653.8 – 750.0 °C. The XRD results showed LiFePO4 are having olivine structure with orthorhombic space group, whereas the SEM results showed that LiFePO4 has round shape with agglomerated microstructure. EIS test results showed impedance of 158 Ω for pure LiFePO4 and 59 Ω for LiFePO4 doped 5% vanadium."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adlan Mizan
"Telah dilakukan proses sintesis LiFe 1-x VxPO4/C untuk katoda baterai litium ion. Pada bahan ini, sintesis diawali dengan pembuatan LiFePO4 yang dilakukan melalui proses hidrotermal dengan bahan dasar LiOH, NH4H2PO4 dan FeSO4.7H2O. Setelah LiFePO4 disintesis, lalu dilakukan penambahan variasi vanadium serbuk yang bersumber dari H4NO3V dan karbon yang berasal dari hasil pirolisis sukrosa selama 2 jam pada 400 C. Bahan-bahan dicampur menggunakan ball-mill lalu dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasilnya memperlihatkan bahwa transisi terjadi pada temperatur sekitar 700 C yang kemudian dijadikan patokan untuk menentukan proses sintering. Sintering dilakukan selama 4 jam lalu hasilnya dikarakterisasi menggunakan difraksi sinar-X XRD. Struktur mikto dan morfologi permukaan selanjutnya dianalisis menggunakan mikroskop elektron SEM.
Hasil karakterisasi dengan XRD menunjukkan bahwa fasa LiFe 1-x VxPO4/C telah terbentuk dengan struktur berbasis olivin. Hasil SEM menunjukan adanya persebaran partikel LiFe 1-x VxPO4/C walaupun beberapa terlihat masih beraglomerasi. Proses pembuatan baterai dilakukan dari bahan hasil sintesis dan diuji menggunakan electrochemical impedance spectroscopy EIS dan uji performa melalui cyclic voltametry CV dan charge and discharge CD . Hasil EIS menunjukan bahwa doping dengan vanadium meningkatkan konduktifitas yang cukup berarti. Hal yang sama juga terjadi dengan adanya karbon sintesis dari sukrosa walaupun masih lebih rendah jika dibandingkan dengan karbon komersial. Uji performa menunjukan bahwa penambahan vanadium meningkatkan kapasitas 51.06 mAh/g saat charging dan 49.42 mAh/g saat discharging dengan beda potensial 3.581 V saat charging dan 3.319 V saat discharging. Hasil yang didapatkan ini cukup menjanjikan untuk penggunaan selanjutnya sebagai katoda baterai litium ion.

Synthesis of LiFe 1 x VxPO4 C used for lithium ion battery cathode has been carried out. In the process, the synthesis was begun by synthesizing of LiFePO4 through a hydrothermal method with the precursors of LiOH, NH4H2PO4 and FeSO4.7H2O. The as synthesized LiFePO4 was then mixed with H4NO3V and carbon pyrolyzed from sucrose for 2 hours at 400 C. The mixture was mixed in a ball mill and then was characterized using a thermal analyzer to determine the transition temperature at which sintering at 700 C for 4 hours was obtained. X ray diffraction XRD was performed to analyzed the crystal structure whereas scanning electron microscope SEM was used to examine the microstructure and surface morphology.
XRD results show that the phase LiFe 1 x VxPO4 C has been formed with an olivine based structure. SEM results showed the distribution of LiFe 1 x VxPO4 C particles are mostly distributed. The batteries were prepared from the as synthesized materials and was tested using electrochemical impedance spectroscopy EIS, cyclic voltammetry CV and charge and discharge CD performance test. The EIS results showed that doping with vanadium improved the conductivity. The same was true with the carbon even at a smaller value compared to that of the commercial one. The performance test showed that the addition of vanadium increased the capacity of about 51.06 mAh g with a potential of 3.581 V at charging and 49.42 mAh g with a potential of 3.319 V at discharging. These results are promising in terms of using this material for lithium ion battery cathode development.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66642
UI - Skripsi Membership  Universitas Indonesia Library
cover
Winidias Chandra Prameswari
"Litium Titanat Oksida (Li4Ti5O12) adalah kandidat yang menjanjikan sebagai anoda untuk baterai Litium ion. Dalam penelitian ini, Li4Ti5O12 disintesis oleh solid-state dengan kadar ZnO Nanorod yang berbeda. Tiga variasi penambahan kadar ZnO Nanorod yaitu 0%, 4% dan 7% dengan label LTO anoda, LTO/ZnO 4% dan LTO/ZnO Nanorod 7%. Uji karakterisasi terhadap zat yang digunakan adalah SEM dan XRD. Uji karakterisasi bertujuan untuk mengamati terbentuknya ZnO Nanorod dengan metode Chemical Bath Deposition (CBD) dan efek penambahan kadar ZnO Nanorod terhadap LTO pada struktur morfologi sampel.
Hasil penelitian menunjukan bahwa kapasitas optimum masing-masing sampel adalah 127.73 mAh/g untuk LTO anoda, 120.74 mAh/g untuk LTO/ZnO 4% dan 125.00 mAh/g untuk LTO/ZnO 7%. Nilai konduktifitas tertinggi yang didapatkan dari pengujian Electrochemical Impedance Spectrometry (EIS) adalah LTO/ZnO 4%. Berdasarkan hasil XRD, Hasil dari semua variabel dipengaruhi oleh impuritas yang terdapat dalam material aktif yang digunakan.

Lithium Titanate Oxide (Li4Ti5O12) is a promising candidate for an anode material in Lithium-ion battery. In this research, Li4Ti5O12 is synthesized using the solid-state method with the addition of ZnO Nanorod. The variable used for this research are at 0%, 4% and 7% and each sample is labelled as LTO anode, LTO/ZnO 4% and LTO/ZnO 7%. Characterization tests were made to all the sample by using SEM and XRD. Characterizations were done to examine the structure of ZnO Nanorod as well as the effect of the addition of ZnO Nanorod to the sample and the elements consisting in the active material.
Result shows that LTO anode has the highest capacity at 127.73 mAh/g followed by LTO/ZnO 7% at 125.00 mAh/g and LTO/ZnO 7% 120.74 mAh/g. The conductivity tested using Electrochemical Impedance Spectroscopy (EIS) shows that the highest conductivity is possessed by LTO/ZnO 4%. The outcome of the research is affected by the impurities in the active materials as shown in the XRD result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panjaitan, Abyan Abdillah Saoloan
"Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 (LTO) yang digunakan disintesis melalui proses sol-gel solid-state dan ditambahkan dengan ZnO-nanorods yang diperoleh dari proses sintesis ZnO- nanorods setelah sintesis LTO selesai. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD. Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen.
Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10% berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4% berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 75.545 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4% berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7% berat dan 10% berat. Juga kapasitas 4% berat yang ditambahkan adalah 110,2 mAh/g dibandingkan dengan 7% berat dengan 109,1 mAh/g dan 10% berat dengan 96,7 mAh/g.

Performance optimization for anode of lithium-ion batteries (LIBs) can be conducted by adding ZnO through sol-gel solid-state reaction. In this research, the Li4Ti5O12 (LTO) used was synthesized through sol-gel solid-state process and added with ZnO-nanorods obtained ZnO synthesis after LTO synthesis done. LTO-ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM-EDS respectively. Electrochemical performance of LTO-ZnO was tested by EIS, CV, and CD. ZnO-nanorods characterization with SEM-EDS results shows that the ZnO inside the LTO dispersed homogenously.
Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt % of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt%, although BET result shows at the optimum amount of surface area with 75.545 m 2 /g. Electrochemical performance result shows optimum performance in ZnO at 4 wt% for its ability to withstand EIS test at 20C compared to 7 wt% and 10 wt%. Also, capacity of 4 wt% added is 110,2mAh/g compared to 7 wt% with 109.1 mAh/g and 10 wt% with 96,7 mAh/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Anfernee Kaloh
"Mengikuti studi literatur, ekstraksi mangan dan litium dari larutan asam dapat dicapai dengan menggunakan natrium karbonat, menghasilkan presipitat karbonat mangan dan litium. Setelah reaksi, padatan disaring menggunakan filter pelat dari larutan asam. Subsistem filter reaktor kedua kemudian dipasang sebagai sejumlah besar litium yang tidak bereaksi dan litium karbonat terlarut yang tersisa. Dengan cara ini, produk padat mangan dan litium karbonat diperoleh pada 99,5% berat. Aliran daur ulang awalnya direncanakan. Namun, setelah pertimbangan dan penyelidikan lebih dalam dalam neraca massa dan spesifikasi peralatan, hal itu dipertimbangkan. Dengan demikian, aliran daur ulang dapat dianggap dilewati. Area pabrik ini mahal, memiliki total biaya tetap berdasarkan lokasi US$164.864.820 di Jakarta, Indonesia. Artinya, rencana proses ini masih memerlukan optimasi dan pertimbangan ulang. Pabrik ini juga mengeluarkan emisi karbon sebesar 80.910,20 kg CO2 per tahun. Dengan optimasi peralatan lebih lanjut, hal ini dapat dikurangi. Analisis bahaya awal menunjukkan bahwa bahaya yang ditimbulkan dalam proses ini agak minimal dan terkait dengan aliran dan bahan peralatan. Tumpahan, korosi, dan erosi adalah bahaya utama yang dapat dicegah dan dikurangi dengan perawatan dan pemeriksaan rutin.

Following a literature study, the extraction of manganese and lithium from an acidic solution can be achieved using sodium carbonate, producing carbonate precipitates of manganese and lithium. Following reaction, solids are filtered out using a plate filter from the acidic solution. A second reactor-filter subsystem is then set in place as a sizeable amount of unreacted lithium and dissolved lithium carbonate remain. In this way, a solid product of manganese and lithium carbonates are obtained at 99.5% by weight. A recycle stream was initially planned. However, after deeper consideration and investigation in mass balances and equipment specifications, it was considered. Thus, the recycle stream can be considered by-passed. This plant area is costly, having a locationfactored total fixed cost US$164,864,820 in Jakarta, Indonesia. This means that this process plan still requires optimisation and reconsiderations. This plant also gives off a carbon emission of 80,910.20 kg CO2 annually. With further equipment optimisation, this can be reduced. Preliminary hazard analysis shows that the hazards posed in this process are rather minimal and are related with flowrates and equipment materials. Spillage, corrosion, and erosion are the major hazards which can be prevented and mitigated by routine maintenance and check-up."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahira Ashfi Zahida
"Duesenfeld, sebuah perusahaan teknologi yang berbasis di Jerman, menyediakan teknologi daur ulang baterai menggunakan proses hidrometalurgi untuk memulihkan logam berharga dari limbah baterai. Dalam laporan ini, konten utama berfokus pada Area 200 di dalam pabrik Duesenfeld. Area ini terutama mencakup pemulihan besi dan aluminium hidroksida sebagai produk padat. Area 200 dibagi menjadi tiga unit operasi utama yaitu unit oksidasi, unit pengendapan, dan unit pemisahan. Debit input Area 200 adalah 31.222,86 ton/tahun atau sekitar 11.583,06 m3/tahun. Perhitungan neraca massa menggunakan beberapa asumsi yaitu 99% besi dan aluminium diperoleh kembali dalam bentuk produk padat, dan 100% reaksi oksidasi. Dari perhitungan tersebut, Area 200 mampu menangkap 610,93 ton/tahun besi hidroksida dan 1350 ton/tahun aluminium hidroksida. Selain itu, hasil perhitungan konsumsi energi adalah 5,21 kWh/hari untuk R-201, 49,99 kWh/hari untuk R-202, dan 7,5 kWh/hari untuk F-201. Perhitungan ukuran peralatan meliputi reaktor oksidasi (R- 201), reaktor presipitasi (R-202), dan filter pelat dan bingkai (F-201). Selain itu, total biaya modal yang dihitung adalah AU$3223314.20, dan biaya operasi adalah AU$862.910,3. Emisi lingkungan dari Area 200 hanya terdiri dari pembuangan air limbah dari konsumsi air untuk pencucian filter cake dan emisi CO2 tidak langsung. Hasil perhitungan konsumsi air adalah 1961,18 ton/tahun yang selanjutnya dibuang dan masuk ke fasilitas pengolahan air limbah. Rekomendasi untuk pekerjaan lebih lanjut mencakup desain terperinci untuk peralatan utama, kontrol proses, P&ID, dan analisis ekonomi keseluruhan
Duesenfeld, a technology company based in Germany, provides a battery recycling technology using hydrometallurgical process to recover valuable metals from battery waste. In this report, the content primarily focuses on Area 200 within the Duesenfeld’s plant. This area mainly covers the recovery of iron and aluminium hydroxides as a solid product. Area 200 is divided into three main unit operations which are oxidation unit, precipitation unit, and separation unit.  The input flowrate of Area 200 is 31,222.86 ton/year or around 11,583.06 m3/year. The material balance calculation uses several assumptions: 99% of iron and aluminium is recovered in the form of solid product, and 100% oxidation reaction. From the calculation, Area 200 able to capture 610.93 ton/year of iron hydroxide and 1350 ton/year of aluminium hydroxide. Moreover, the calculated energy consumptions for the critical equipment are  5.21 kWh/day for R-201, 49.99 kWh/day for R-202, and 7.5 kWh/day for F-201.The sizing of critical equipment includes oxidation reactor (R-201), precipitation reactor (R-202), and plate and frame filter (F-201). Moreover, the calculated total capital cost is AU$3223314.20, and the operating cost is AU$862,910.3 The environmental emissions from Area 200 only consist of wastewater disposal from water consumption for filter cake washing and indirect CO2 emissions. The water consumption is calculated to be 1961.18 ton/year which thereafter the water is disposed and enters wastewater treatment facility. Recommendations for further work include detailed design for the major equipment, process control, P&ID, and detailed overall economic analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julian Permana
"Seiring dengan perubahan dunia yang sangat cepat, efisiensi dalam mengelola persediaan menjadi hal yang sangat penting, terutama bagi UKM. Ada beberapa sumber daya penting yang dibutuhkan oleh UKM untuk meningkatkan bisnis mereka: sejumlah dana, penguasaan teknologi, dan sumber daya manusia. Robotic Process Automation (RPA) sebagai salah satu teknologi unggulan di Industri 4.0 dapat mengatasi kebutuhan sumber daya manusia untuk melakukan tugas-tugas dalam manajemen persediaan. RPA dianggap sebagai salah satu teknologi modern yang memungkinkan UKM melakukan tugas berulang dengan lebih efisien sehingga menghasilkan kinerja organisasi yang lebih baik. Penelitian ini mengadopsi tahap Inisialisasi dan Implementasi dari The Consolidated Framework for Implementing RPA Project. Data bersumber dari salah satu UKM dalam bisnis kecantikan yang beroperasi di Provinsi Jawa Tengah- Indonesia, dimana bisnis kecantikan dianggap sebagai salah satu sektor yang berkembang pesat saat ini di Indonesia. Ruang lingkup penelitian ini difokuskan pada manajemen persediaan seperti pengecekan stok persediaan, peramalan permintaan produk berdasarkan data historis, membuat rencana pembelian, memesan barang ke vendor melalui email dan menindaklanjuti menggunakan email jika barang yang dipesan belum datang. Temuan penelitian ini menunjukkan bahwa penggunaan RPA dalam manajemen persediaan dapat menghemat banyak biaya yang sebelumnya dianggap sebagai beban. Adanya RPA di perusahaan telah berhasil membantu AuradermA Skin Care dalam mengelola persediaan dengan lancar, mengurangi beban kerja staf dan pada akhirnya memastikan persediaan tidak habis atau berlebihan. Diharapkan penelitian ini memberikan kontribusi dalam bidang RPA karena implementasi RPA belum begitu banyak ditemukan terutama untuk UKM.

State of Charge (SOC) is a condition that states battery charge condition. This condition is important to know to ensure safe battery operating condition. One of the challenge in estimating SOC is that the battery dynamic system. To estimate SOC, battery undergoes characterization process. The Li-Ion battery characterization system monitors voltage across the battery as well as current going to or out of the battery. After the system is assembled, battery will be prepared before characterization using Constant Current Constant Voltage (CCCV) charging. Characterization process starts with battery undergoing discharging and charging process. In this research, Li-Ion battery made from LiNiMnCoO2 is modelled based on second order Thevenin Equivalent Circuit Model. SOC estimation is optimized using Uscented Kalman Filter (UKF). Next, battery undergoes Hybrid Pulse Power Characterization (HPPC) test to obtain ECM parameters. Next, ECM parameters are used as value to be fitted with SOC from Coulomb Counting (CC) with seventh order polynomial method from HPPC result. SOC estimation validation is done using Dynamic Stress Test (DST). The SOC estimation result using UKF is compared to the estimation which doesn’t use UKF. The simulation and experiment result show that UKF algorithm is able to adjust its estimation result when given wrong initial SOC estimation value. The simulated SOC estimation result using UKF is compared with the CC method and reference SOC have Root-Mean Square Error (RMSE) of 0.7 % and Maximum Error (ME) of 9.9 %. The experiment SOC estimation result compared with CC SOC method has RMSE of 2.76 % and ME of 10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>