Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61291 dokumen yang sesuai dengan query
cover
Renanto Pandu Wirawan
"Setiap tahun manusia memproduksi hampir 280 juta ton plastik dan banyak dari plastik itu berakhir di lingkungan sehingga merusak kehidupan laut dan ekosistem lainnya. Studi Bank Dunia dalam What a Waste pada tahun 2012 memperkirakan persentase sampah plastik di kawasan Asia Timur dan Pasifik sebesar 13% dan 12% di Indonesia. Saat ini telah banyak penelitian yang dilakukan untuk mengubah sampah, khususnya sampah plastik menjadi bahan bakar. Proses pirolisis dipilih oleh sebagian besar peneliti karena potensinya untuk mengubah sebagian besar energi dari sampah plastik menjadi minyak cair, gas dan arang. Pada pirolisis sampah plastik menjadi bahan bakar minyak memiliki faktor penting dalam menghasilkan yield cairan, seperti temperatur, jenis reaktor, waktu tinggal, tekanan, dan katalis. Desain faktorial digunakan pada penelitian ini dikarenakan desain ini merupakan alat analisis yang kuat untuk memodelkan dan menganalisis pengaruh faktor proses terhadap beberapa variabel tertentu. Sampah plastik yang digunkana pada penelitian ini adalah homogen atau PP dan heterogen yang merupakan campuran plastik tanpa adanya PVC.
Hasil dari proses pirolisis diketahui bahwa cairan terbesar terjadi ketika menggunakan plastik homogen 88,5 % berat. Sementara untuk char dan gas didapatkan 2,03 % dan 9,47 % berat. Karakterisasi dari cairan proses pirolisis plastik homogen atau PP yang dianggap seperti solar memiliki nilai setana sebesar 48,3,densitas sebesar 806 kg/m3, viskositas kinematik sebesar 2,489 mm2/sec,  kandungan asam sebesar 4,04 mgKOH/gr, kandungan air sebesar 271,6 mg/kg, dan kandungan abu sebesar 1 % v/v. Desain faktorial proses pirolisis menunjukkan bahwa faktor yang signifakan adalah jenis plastik dan waktu tunggu dengan nilai F sebesar 25,66 dan 5,51. Optimasi untuk mendapatkan cairan sebesar 80,9 % berat dapat dilakukan dengan menggunakan jenis plastik homogen atau PP, temperatur 250 oC dan waktu tinggal 300 menit. Ada dua cara yang dilaporkan untuk peningkatan minyak cair, termasuk penyulingan dan pencampuran dengan diesel konvensional agar cocok untuk berbagai aplikasi komersial.

Every year humans produce nearly 280 million tons of plastic and many of the plastic ends up in the environment, damaging marine life and other ecosystems. The World Bank study in What a Waste in 2012 estimated the percentage of plastic waste in the East Asia and Pacific region at 13% and 12% in Indonesia. At present a lot of research has been done to convert waste, especially plastic waste into fuel. The pyrolysis process was chosen by most researchers because of its potential to convert most of the energy from plastic waste to liquid oil, gas and charcoal. In pyrolysis of plastic waste into fuel oil has an important factor in producing liquid yields, such as temperature, reactor type, residence time, pressure, and catalyst. Factorial design is used in this study because this design is a powerful analytical tool for modeling and analyzing the influence of process factors on certain variables. The plastic waste used in this study is homogeneous or PP and heterogeneous which is a mixture of plastic without PVC.
The results of the pyrolysis process are known that the largest liquid yield occurs when using homogeneous plastic 88.5% by weight. While for char and gas obtained 2.03% and 9.47% by weight. Characterization of a homogeneous plastic pyrolysis liquid or PP which is considered as solar has cetane number 48,3, density of 806 kg / m3, kinematic viscosity of 2.489 mm2 / sec, acid content of 4.04 mgKOH / gr, water content of 271.6 mg / kg, and ash content of 1% v / v. The factorial design of the pyrolysis process shows that the significant factors are the type of plastic and the waiting time with F values of 25.66 and 5.51. Optimization to obtain liquid yield of 80.9% by weight can be done using homogeneous plastic or PP type, temperature of 250 oC and residence time of 300 minutes. There are two ways reported for increasing liquid oil, including refining and mixing with conventional diesel to be suitable for a variety of commercial applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54247
UI - Tesis Membership  Universitas Indonesia Library
cover
Yolla Miranda
"Bonggol jagung merupakan limbah dengan jumlah yang cukup banyak di Indonesia. Sejauh ini pemanfaatan utama untuk biomassa. Namun biomassa tersebut masih mengalami kendala karena tingginya senyawa oksigenat yang menyebabkan heating value-nya rendah. Plastik polipropilena diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Pencampuran biomassa dan plastik akan menghasilkan efek sinergetik dalam memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Berbagai penelitian pada slow co-pyrolysis telah dilakukan terutama pada reaktor tubular dengan rasio tinggi terhadap diameter, lebih dari 4. Tetapi untuk skala besar, bentuk reaktor seperti ini sangat sulit dilakukan scale-up.
Pada penelitian ini reaktor dibuat dengan rasio kurang dari 2. Perpindahan panas khususnya pada plastik yang memiliki konduktivitas termal rendah dibantu dengan adanya pengaduk untuk memperbaiki persebaran perpindahan panas tersebut. Identifikasi pengaruh efek sinergetik dilakukan dengan menganalisis bio-oil menggunakan FTIR dan GC-MS. Efek sinergetik yield bio-oil terjadi pada komposisi PP terhadap bonggol jagung sebesar 50-87,5 dengan 87,5 sebagai yield tertinggi. Sementara efek sinergetik kualitas bio-oil yang berupa peningkatan senyawa non-oksigenat terjadi pada komposisi PP 37,5-87,5.

Corn cob is a waste which has considerable amount in Indonesia. So far, its utilization especially for biomass. However, biomass still having problems because the high oxygenate compound which causes low heating value. The pure polypropylene plastic has a H C ratio higher and poor in oxygen, so slow co pyrolysis of biomass with plastic can be used for bio oil upgrading solutions which is simple, effective and inexpensive. By mixing the two feedstocks, a synergetic effect would be created to improve the quantity and quality of the bio oil produced. Various studies on the slow co pyrolysis has been carried out mainly in the tubular reactor with a high ratio of the diameter, more than 4. But for large scale, that reactor design will be very difficult to scale up.
This research, reactor was made with a ratio less than 2. The heat transfer especially on the plastic that has a low thermal conductivity helped by stirrer to improve the distribution of heat transfer. Identification of the synergetic effect was done by analyzing bio oil using FTIR and GC MS. Synergetic effects of bio oil yield occurred in the composition of the PP towards corn cobs of 50 to 87.5 which 87.5 as the highest yield. While the synergetic effect of the quality in bio oil as an increase in the composition of the non oxygenate which exist in PP composition 37.5 to 87.5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S62753
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amaranggana Novianti
"Peningkatan jumlah sampah plastik di Jakarta menimbulkan beberapa permasalahan lingkungan. Untuk mengatasi permasalahan tersebut, dibuat metode pengolahan sampah plastik khususnya polystyrene dengan metode pirolisis. Tujuan penelitian ini yaitu mengetahui karakteristik liquid oil produk pirolisis serta menganalisis perpindahan kalor pada reaktor dan cooling water serta kesetimbangan energi untuk mengubah polystyrene menjadi liquid oil. Pirolisis polystyrene dilakukan dengan memvariasikan temperatur reaksi 350 C-550 C serta dikondensasi menggunakan temperatur air dingin dan air biasa. Hasil liquid oil optimum berada di temperatur 500 C dengan air dingin. Liquid oil dapat digunakan sebagai bahan bakar dengan komposisi utamanya yaitu 60.33 berupa Benzocyclobutane serta memiliki nilai kalor sebesar 43.83 MJ/kg, dengan densitas 0.89 g/ml, serta viskositas kinematik 0.78 cSt.

The increase of plastics waste in Jakarta has created some problems. Processing plastic waste, particularly polystyrene, using a pyrolysis method can be a solution to these problems. The purpose of this research is to obtain the characteristics of liquid oil as pyrolysis product and analyze heat transfer at the reactor and cooling water then the energy balance for producing liquid oil. The polystyrene pyrolysis method was done through temperature reactions varied from 350 550 C, also condensed by using low and normal temperature of water. The optimum result of liquid oil was produced in temperature reaction of 500 C using cold water. Utilization of this liquid oil can be used as fuel, with 60.33 Benzocyclobutane as the main composition and it has heating value equals to 43.83 MJ kg, with 0.89 g ml density, and 0.78 cSt kinematic viscosity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67899
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sidauruk, Juan Octavian Daniel
"Pirolisis berfungsi untuk mengubah sumber karbon polipropilena PP dalam bentuk padatan agar dapat menjadi bahan baku sintesis berupa gas. Variasi suhu dan waktu pirolisis dilakukan agar memperoleh hubungan antara keduanya dengan jumlah gas pirolizat yang terbentuk, yield CNT, dan kualitas CNT. Pirolisis dimulai dengan memanaskan PP pada rentang suhu 525-600°C untuk menghasilkan gas-gas pirolisis yang akan diuji kandungannya menggunakan GC-FID. Metode yang digunakan untuk memproduksi CNT dari plastik PP adalah metode flame synthesis dengan substrat berjenis stainless steel 316 wired mesh. Pada proses sintesis, SS 316 dipreparasi dengan oxidative heat treatment pada suhu 800°C selama 10 menit.
Gas hasil pirolisis kemudian dibakar pada suhu 800°C dengan dialiri gas oksigen selama 60 menit agar bereaksi menjadi CO yang kemudian menghasilkan deposisi CNT pada permukaan substrat katalitik. Uji karakterisasi dari sampel CNT yang dihasilkan menggunakan instrumen XRD, TEM dan SEM. Yield tertinggi dihasilkan pada sampel dengan suhu pirolisis 525°C dan waktu pirolisis 45 menit. Sementara itu, dari segi morfologi, struktur, diameter kristal, diameter partikel, fenomena pertumbuhan CNT yang terbaik diperoleh pada suhu pirolisis 525°C dan waktu pirolisis 30 menit yang mulai membentuk MWCNT dengan diameter rata-rata kristal sebesar 23,81 nm dan diameter partikel sebesar 28,52 nm.

Pyrolysis is used to convert the carbon source of polypropylene PP in solid form to be synthetic feedstocks in gaseous hydrocarbon form. Variations of the pyrolysis temperature and time are carried out to obtain the correlation between those variables and amount of pyrolysis gases, the yield, and quality of produced CNT. PP is pyrolized at temperature range of 525-600°C to produce pyrolizate gases which will be characterized with GC FID. Flame synthesis is used to convert PP plastic waste into CNT alongside with the use of wired mesh stainless steel type SS 316 as the substrate.
The substrate is pre treated by oxidative heat treatment at 800°C for 10 minutes. Pyrolizate gases are mixed with oxygen flowed from a venturi to enable combustion reaction. The pretreated substrates are placed inside the synthesis reactor. The combustion gas is flowed to the synthesis reactor to produce CNT at 800°C. Produced CNT is characterized using XRD, TEM, and SEM. The highest yield is obtained at the pyrolysis temperature of 525°C for 45 minutes. The optimal quality is obtained at the pyrolysis temperature of 525°C for 30 minutes that has 23.81 nm of average crystalline size and 28.52 nm of particle size of CNT.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67015
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febry Dahyani
"Kuantitas biogas dan kadar metana yang dihasilkan dari proses anaerobik berhubungan erat dengan aktivitas mikroorganisme yang dipengaruhi oleh parameter proses maupun komposisi substrat. Salah satu cara optimalisasi proses anaerobik ini adalah dengan menggunakan tambahan inokulum berupa kultur mikroorganisme. Reaktor batch skala laboratorium volume 6000 mL dengan konsentrasi padatan rendah (4-5%) digunakan untuk menganalisa pengaruh penambahan Effective Microorganism 4 (EM4) terhadap penguraian anaerobik hasil cacahan sampah makanan. Penelitian yang berlangsung selama 90 hari membuktikan bahwa, dalam kondisi suhu mesopilik (29,5 ± 1,5 0C), reaktor tanpa penambahan EM4 mengalami penurunan Total Solid (TS) dan Volatile Solid (VS) berturut – turut sebanyak 24% dan 3%, menghasilkan biogas 0,67 m3/kg VS yang hilang, dengan persentase metana 0%. Sedangkan, dengan penambahan EM4 0,2% (v/v) penurunan TS dan VS berturut-turut mencapai 60% dan 44%, dengan laju penurunannya (orde pertama) dipercepat sebanyak 3x dan 20x (dibandingkan tanpa penambahan EM4). Serta menghasilkan biogas 2,01 m3/kg VS yang hilang (hari ke-0 – ke-57) dan 0,98 m3/kg VS yang hilang (hingga hari ke- 90) dengan persentase metana 83%, dan laju pembentukan metana (k) 0,024 hari-1 atau 254,5 L/kg VS.hari. Dari hasil tersebut, diperoleh bahwa proses lebih optimal dengan adanya penambahan kultur mikroorganisme EM4.

Biogas and methane yield from anaerobic process are related to microorganism activity which are affected by process parameters and substrate composition. Optimization of this anaerobic process can be conducted using microorganism culture as inoculums for substrate. Lab-scale batch reactor with volume of 6000 mL and low solid concentration (4 – 5%) are used for analyzing the effect of added Effective Microorganism 4 (EM4) on the anaerobic digestion of shredded food waste. The 90 days experiment at mesophilic condition (29.5 ± 1.5 0C) showed that reactor without addition of EM4 can only achieve Total Solid (TS) and Volatile Solid (VS) removal of 24% and 3%, respectively, biogas yield 0.67 m3/kg VS destroyed, with 0% methane. While, the reactor with addition of 0.2% EM4 (v/v) can achieve TS and VS removal of 60% and 44%, with decomposition rate (first order) were accelerated 3x and 20x (compared to without addition of EM4), respectively. Biogas yield are 2.01 m3/kg VS destroyed (day- 0 – 57) and 0.98 m3/kg VS destroyed (until day- 90), with 83% methane, and methane yield rate (k) at 0.024 day-1or 254.5 L/kg VS.day. These result showed that anaerobic process can be optimized with addition of EM4."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46848
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diyas Prawara Mahdi
"Mulai munculnya suatu dorongan yang makin meningkat untuk merubah ketergantungan terhadap produk bahan bakar fosil untuk kebutuhan energi dunia. Hal ini diakibatkan oleh mulai habisnya sumber bahan bakar fosil untuk di masa yang akan datang serta dampak negatifnya terhadap lingkungan terkait dengan eksploitasi bahan bakar fosil serta kaitannya dengan emisi gas rumah kaca dan perubahan iklim seperti misalnya pada proses pembakaran bahan bakar fosil untuk pembangkit listrik menyumbangkan lebih dari 29% emisi CO2 dunia pada tahun 2004. Biomassa telah mendapat perhatian lebih sebagai sumber alternatif yang layak dikarenakan tersedia berlimpah di seluruh dunia serta dianggap sebagai sumber nol CO2. Biomassa merupakan suatu sumber daya yang banyak tersedia, bersifat terbarukan, harga yang relatif murah bahkan ada yang gratis, serta dapat digunakan secara luas. Proses pirolisis merupakan tahap awal dari proses pembakaran serta gasifikasi. Proses ini bukan hanya merupakan teknologi transformasi yang bersifat independen, namun juga merupakan bagian dari proses gasifikasi dan pembakaran yang terdiri dari proses penguraian bahan bakar padat menjadi cair dan termal tanpa ada zat pengoksidasi. Keuntungan yang paling penting dari proses pirolisis adalah dapat diatur untuk mendapatkan hasil yang diinginkan. Misalkan dibutuhkan proses pirolisis lambat untuk meningkatkan hasil dari biochar, sedangkan proses pirolisis cepat untuk meningkatkan hasil dari bio-oil. Nilai kohe yang dibutuhkan pada reaktor pirolisis MRPP untuk mendapatkan bio-syngas paling optimal yaitu 886.88 gram untuk dapat menghasilkan persentase produk hasil pirolisis berupa bio-syngas paling banyak sebesar 75.01%. Perbedaan simulasi menggunakan Python terhadap data saat pengambilan data menggunakan reaktor pirolisis MRPP yaitu selisih 33,33 gram dengan rincian hasil dari pengambilan data yaitu sebanyak 750 gram. Efisiensi konsumsi bahan bakar untuk mengoperasikan alat reaktor MRPP yaitu 225g/jam.

There is a growing push to change dependence on fossil fuel products for the world's energy needs. This is caused by the depletion of fossil fuel sources for the future and the negative impact on the environment related to the exploitation of fossil fuels and their relation to greenhouse gas emissions and climate change, such as the process of burning fossil fuels for electricity generation, contributing more of 29% of world CO2 emissions in 2004. Biomass has received more attention as a viable alternative source as it is abundantly available worldwide and is considered a zero CO2 source. Biomass is a resource that is widely available, is renewable, the price is relatively cheap, some are even free, and can be used widely. The pyrolysis process is the initial stage of the combustion and gasification process. This process is not only an independent transformation technology, but also a part of the gasification and combustion processes which consist of the decomposition of solid fuel into liquid and thermal without the presence of oxidizing agents. The most important advantage of the pyrolysis process is that it can be adjusted to obtain the desired result. For example, a slow pyrolysis process is needed to increase the yield of biochar, while a fast pyrolysis process is needed to increase the yield of bio-oil. The cohe value needed in the MRPP pyrolysis reactor to obtain the most optimal bio-syngas is 886.88 grams to be able to produce the highest percentage of pyrolysis products in the form of bio-syngas of 75.01%. The difference in the simulation using Python on the data when collecting data using the MRPP pyrolysis reactor is the difference of 33.33 grams with the details of the results from data collection which is as much as 750 grams. The efficiency of fuel consumption to operate the MRPP reactor is 225g/hour."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saeful Pranata
"Bio-oil production from biomass has a disadvantage because it cannot be used as fuel since it contains a lot of oxygenates, so that the heating value is low and cannot be used as fuel. This study aims to generate oil palm empty fruit bunch-based bio-oil with better quality by adding plastic waste so that can produce Bio-oil with qualified specification as a fuel. The method used in this study is slow co-pyrolysis, where a mixture of biomass and plastic materials is pyrolyzed with the heating rate is low (5°C/min). With the addition of plastic, slow pyrolysis will behave like fast pyrolysis in which a high yield of Bio-oil as a result of increased heat transfer from the heater to the reactor for biomass materials. The independent variables in this study are type of plastic (PP and HDPE) and plastic-biomass composition in the mix, while the dependent variables in this study are Bio-oil’s viscosity, color, pH, and yield. In the pyrolysis reactor, plastic materials and biomass are mixed into cracking boat. Biomass, plastics, and Bio-oil produced were analyzed using GC-MS. The result obtained is addition of plastic waste can improve the quality of bio-oil in pH, viscosity, color stability, and oxygenate compounds.

Produksi bio-oil berbasis biomassa memiliki kendala dalam kualitas karena tidak dapat digunakan sebagai bahan bakar karena bio-oil yang dihasilkan masih mengandung banyak oxygenates (senyawa yang mengandung oksigen), sehingga heating value-nya rendah dan belum dapat digunakan sebagai bahan bakar. Penelitian ini bertujuan untuk menghasilkan bio-oil berbasis tandan kosong kelapa sawit dengan kualitas yang lebih baik melalui penambahan limbah plastik sehingga dapat menghasilkan Bio-oil yang dengan spesifikasi yang sesuai untuk digunakan sebagai bahan bakar. Metode yang digunakan dalam penelitian ini adalah slow co-pyrolysis, di mana campuran biomassa dan bahan plastik dipirolisis dengan heating rate yang rendah (5oC/menit). Dengan penambahan plastik, slow pyrolysis akan berkelakuan seperti fast pyrolysis di mana yield Bio-oil tinggi sebagai akibat dari peningkatan perpindahan panas dari pemanas pada reaktor ke bahan biomassa. Variabel bebas dalam penelitian ini adalah jenis plastik (PP dan HDPE) dan komposisi plastik-biomassa dalam campuran (0:100, 10:90, 25:75, 50:50, 75:25, 100:0), sedangkan variabel terikat dalam penelitian ini adalah viskositas, pH, warna, dan yield Bio-oil. Dalam reaktor pirolisis, bahan plastik dan biomassa dicampur ke dalam cracking boat. Biomassa, plastik, dan Bio-oil yang dihasilkan dianalisis menggunakan GC-MS. Hasil yang didapatkan adalah penambahan limbah plastik dapat meningkatkan kualitas bio-oil dari segi pH, viskositas, kestabilan warna, dan kandungan oksigenat.
"
Fakultas Teknik Universitas Indonesia, 2014
S59434
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haqqyana
"Untuk meningkatkan bio-oil baik dari segi kualitas dan kuantitas, co-pyrolysis jerami padi dengan plastik HDPE dan PP, yang mengandung kadar hidrogen tinggi, dapat menjadi salah satu solusi. Prosedur slow co-pyrolysis dilakukan pada reaktor batch dengan laju pemanasan 5℃ /menit hingga suhu 500℃ dan laju aliran nitrogen yang digunakan adalah 750 mL/menit. Produk cair selanjutnya dianalisis dengan menggunakan GC-MS.
Hasil penelitian menunjukkan bahwa semakin besar rasio berat plastik/biomassa menghasilkan yield char yang rendah serta yield oil dan yield gas yang cenderung meningkat dengan hasil bio-oil maksimum diperoleh melalui co-pyrolysis PP/jerami padi dengan rasio berat 25:75, yakni 12,88%. Besarnya rasio berat plastik/biomassa juga mempengaruhi penurunan senyawa aldehid dan fenol pada kandungan bio-oil. Adapun lama waktu penahanan menunjukkan adanya reaksi cross-linking sehingga meningkatkan yield waxy solid.

To improve the quality and quantity of bio-oil derived from rice straw pyrolysis, the idea of incorporating plastics (HDPE and PP) containing higher hydrogen contents can be considered. Slow co-pyrolysis performed in a batch reactor with a heating rate of 5℃ /min up to a temperature of 500℃ with nitrogen flow rate 750mL/min. Liquid products were than analyzed by GC/MS.
The results showed that the greater the weight ratio of plastic/biomass produces low char yield with oil and gas yield are likely to increase. The maximum yield of bio-oil obtained (12,88%) through co-pyrolysis of PP/rice straw with a weight ratio of 25;75. Upon increasing weight ratio of plastic/biomass, the decline of aldehyde and phenol compunds in bio-oil were observed. The increasing holding time thus further promotes cross-linking reaction thereby increasing the amount of waxy solid obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S62624
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>