Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165921 dokumen yang sesuai dengan query
cover
Cici Safitri
"Modifikasi permukaan boron-doped-diamond (BDD) dengan Ni-Mn, Ni-Co dan Ni-Cu telah dilakukan untuk digunakan sebagai elektroda kerja pada sistem sel bahan bakar berbasis membran polimer elektrolit (Polymer Electrolyte Membrane Fuel Cell, PEMFC). Modifikasi dilakukan dengan rangkaian teknik wet chemical seeding (pembibitan kimia), electrochemical overgrowth of the seeds (penumbuhan kimia), annealing (pemanasan), serta refreshed and activation. Karakterisasi siklikvoltametri dan XPS menunjukkan spesi elekrokatalis Ni(OH)2 pada sampel Ni-Mn/BDD, Ni-Cu/BDD, dan Ni-Co/BDD dapat dideposisi pada potensial +0,32 V, +0,31 V dan +0.33 V berturut-turut, dengan energi ikat sebesar 855,6 eV. Agar dapat mengelektrooksidasi urea, dilakukan perubahan spesi α-NiOOH menjadi β-NiOOH yang lebih stabil dari Ni(OH)2 dengan siklikvoltametri dalam KOH 1 M selama 300 siklus. Poks tertinggi terdapat pada sampel Ni-Cu/BDD yakni 2.75 μA pada +0,59 V. Namun, pada pengaplikasian urea-PEMFC, Ni-Mn/BDD menunjukkan hasil terbaik menggunakan anolit 0,33 M dan KOH 0,1 M di ruang anoda serta katolit H2O2 2 M dan H2SO4 2 M di ruang katoda dengan densitas daya rata-rata 0,061733 mW/cm2, densitas arus rata-rata 0,185242 mA/cm2, potensial rata-rata sebesar 0,34 V vs SHE, dan efisiensi tegangan maksimal sebesar 15.83%. Sedangkan pada PEMFC berbahan bakar urin, densitas daya rata-rata yang dihasilkan 0.0889 mW/cm2, densitas arus rata-rata 0.189 mA/cm2, potensial rata-rata sebesar 0.66 V vs SHE dengan waktu pengoperasian selama 3600 detik

Surface modification on boron-doped diamond (BDD) using Ni-Mn, Ni-Co dan Ni-Cu have been performed for application as working electrodes in a Polymer Electrolyte Membrane Fuel Cell (PEMFC) system. The series of wet chemical seeding, electrochemical overgrowth of the seeds, annealing, refreshed and activation techniques has been applied to modify the surface area. Characterization using cyclicvoltammetry and XPS indicate that Ni(OH)2 able to be well deposited on Ni-Co/BDD, Ni-Mn/BDD, and Ni-Cu/BDD samples at potential +0,32 V, +0,31 V dan +0.33 V respectively with binding energy as 855,6 eV. To electrooxidize urea, the change of α-NiOOHto β-NiOOH from deposited Ni(OH)2 electrochemicaly can be conducted by giving constant potential for 300 cycles in 1 M KOH. Highest oxidation peak of Ni3+ is belong to Ni-Cu/BDD as high as 2.75 μA at +0,59 V. In contrary, application Ni-Mn/BDD to urea-PEMFC shows best result by using mixture of 0.33 M urea and 0.1 M KOH as anolyte in anodic chamber, while a mixture of 2 M H2O2 and 2 M H2SO4 as chatolyte in cathodic chamber with average power density 0,061733 mW/cm2, current density 0,185242 mA/cm2, and potential of 0,34 V vs SHE with 15,83% of maximum voltage effiency yield. Urine as fuel in PEMFC has been also applied into the system with producing average power density as 0.0889 mW/cm2, 0.189 mA/cm2 for average current density, and 0.66 V vs SHE for open circuit votage for 3600 second of operation time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52013
UI - Tesis Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
"Fuel cell urea menarik dikembangkan karena karakteristik dari urea, seperti non-toxic, tidak mudah terbakar, serta merupakan salah satu penyusun limbah terbesar, yaitu urin. Untuk meningkatkan efisiensi dari fuel cell urea/H2O2, diperlukannya suatu katalis anoda. Nikel dikenal sebagai katalis yang baik serta memiliki energi aktivasi yang baik pula pada medium basa. Umumnya paduan antara nikel dengan metal lain dilakukan untuk meningkatkan stabilitas serta meningkatkan aktivitas katalitiknya. Pada penelitian ini, bimetal nikel-kobalt, nikel-mangan, nikel-tembaga, dan nikel-zinc dideposisi pada permukaan boron-doped diamond (BDD) untuk dijadikan sebagai katalis anoda pada fuel cell urea/H2O2. Karakterisasi dengan menggunakan SEM dan XPS menunjukkan bahwa partikel bimetal tersebut telah terdeposisi secara merata di atas permukaan BDD. Optimasi membran penukar ion, konsentrasi KOH sebagai medium basa pada urea, serta variasi komposisi perbandingan bimetal menunjukkan hasil terbaik pada penggunaan NiMn-BDD sebagai katalis anoda dengan densitas daya sebesar 0,712 mW cm-2 pada potensial sebesar 0,339 V vs SHE dan densitas arus sebesar 2,107 mA cm-2. Membran yang digunakan adalah penukar anion dengan elekrolit KOH 3 M dan perbandingan antara nikel dan mangan sebesar 4:1. Stabilitas yang baik diperoleh pada pengaplikasian selama tiga jam dengan rata-rata potensial diperoleh sebesar 0,5461 V vs SHE.

Urea fuel cell is very interesting to be developed because of the characteristics of urea, such as non-toxic, non-flammable, and it is one of the biggest waste compilers, urine. To increase the efficiency of the urea/H2O2 fuel cell, an anode catalyst is needed. Nickel is known as a good catalyst and has a good activation energy in alkaline medium. Generally, the alloy or bimetal of nickel and other metals are done to increase the stability and the catalytic activity of nickel. In this study, bimetallic nickel-cobalt, nickel-manganese, nickel-copper and nickel-zinc deposited on the surface of boron-doped diamond (BDD) are investigated as an anode catalyst in urea/H2O2 fuel cells. Characterization using SEM-EDX and XPS shows that the bimetal particles have been deposited quite homogenously on the surface of BDD. Optimation of the ion exchange membrane, KOH concentration as a base medium on urea, and composition's ratio of bimetal showed the best result can be obtained using NiMn-BDD as an anode catalyst with a power density of 0.712 mW cm-2 at a potential of 0.339 V vs SHE and a current density of 2.107 mA cm-2. The membrane used is an anion exchange membrane using 3 M KOH and a 4: 1 ratio between nickel and manganese. Good stability was obtained for three hours of application with an average potential obtained of 0.5461 V vs SHE."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54721
UI - Tesis Membership  Universitas Indonesia Library
cover
Arya Maulana Ichsan
"ABSTRAK
Fuel cell menjadi sorotan utama sebagai sumber energi alternatif karena mampu mengubah energi kimia menjadi listrik, panas, dan air. Urea, sebagai salah satu komponen utama dalam urin, merupakan salah satu bahan bakar yang dapat digunakan dalam sistem fuel cell karena memiliki densitas energi paling besar dibanding dengan molekul pembawa hidrogen umum lainnya. Pada penelitian ini, boron-doped diamond BDD dimodifikasi dengan paduan logam nikel-kobalt untuk digunakan sebagai elektroda dalam sistem fuel cell. Modifikasi BDD dilakukan dengan metode pembibitan serta elektrodeposisi Ni NO3 2 dan CoCl2 dengan variasi perbandingan mol Ni dan Co sebesar 9:1; 7:3; 6:4; 5:5. Elektroda yang terbentuk dikarakterisasi menggunakan SEM-EDX dan XPS. Karakterisasi dengan SEM-EDX menunjukkan bahwa elektroda telah berhasil dimodifikasi dengan persen berat nikel sebesar 0,15 w/w pada Ni-BDD, kobalt sebesar 0,25 w/w pada Co-BDD. Kemudian pada elektroda NiCo-BDD 9:1; 7:3; 6:4; dan 5:5 berturut-turut, teramati nikel:kobalt sebesar 0,64 :0,04 w/w ; 0,47 :0,19 w/w ; 0,48 :0,01 w/w ; 0,44 :0,22 w/w. Sementara dengan XPS didapat nikel sebanyak 3,48 pada Ni-BDD, kobalt sebanyak 0,405 sebanyak Co-BDD, nikel:kobalt sebanyak 1,55 :0,428 ; 0,49 :0,226 ; 0,864 :0,594 ; dan 0,491 :0,364 untuk NiCo-BDD 9:1; 7:3; 6:4; dan 5:5 berturut-turut. Didapatkan densitas daya terbesar untuk elektroda NiCo-BDD 7:3 sebesar 0,12001 mW/cm2 ketika digunakan urea 0,33 M dan 0,12257 mW/cm2 ketika digunakan sampel urin.

ABSTRACT
Fuel cell becomes the main highlight for the alternative energy because it converts chemical energies into electricity, heat, and water. Urea, as one of the main components in urine, can be used as a fuel in the fuel cell system because it has the highest energy density compared to other common hydrogen carriers. In this study, boron doped diamond BDD was modified with nickel cobalt then used as electrode in the fuel cell system. The modification was done by seeding and electrodeposition methods with Ni NO3 2 and CoCl2 with Ni and Co mol ratios of 9 1 7 3 6 4 and 5 5. The modified electrodes, were characterized with SEM EDX and XPS. SEM EDX characterization showed that the electrodes were modified successfully with nickel mass percentage of 0,15 w w on Ni BDD, cobalt of 0,25 w w on Co BDD, nickel cobalt of 0,64 0,04 w w 0,47 0,19 w w 0,48 0,01 w w 0,44 0,22 w w on NiCo BDD 9 1 7 3 6 4 and 5 5 respectively. Further characterization with XPS showed nickel percentage of 3,48 on Ni BDD, cobalt of 0,405 on Co BDD, nickel cobalt of 1,55 0,428 0,49 0,226 0,864 0,594 dan 0,491 0,364 on NiCo BDD 9 1 7 3 6 4 and 5 5 respectively. Highest power density of 0,12001 mW cm2 was obtained with NiCo BDD 7 3 electrode using 0,33 M urea and 0,12257 mW cm2 using urine sample."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Isnaini Rahmawati
"Sebagian besar penggunaan energi primer untuk pembangkit energi listrik berasal dari energi fosil (Sujatmiko,2009). Penggunaan energi fosil dapat menimbulkan permasalahan bagi lingkungan. Oleh karena itu, dibutuhkan suatu energi alternatif yang ramah lingkungan untuk mengatasi masalah tersebut. Microbial Fuel Cell (MFC) merupakan salah satu sumber energi alternatif yang prospektif untuk dikembangkan dan ramah lingkungan. Pada penelitian ini, urin digunakan sebagai bahan bakar dan khamir Candida fukuyamaensis digunakan sebagai biokatalis pada sistem MFC. Elektroda yang digunakan pada penelitian ini ialah elektroda BDD. Dilakukan variasi pH dari pH 5-8. Energi listrik optimum dengan densitas arus sebesar 970 mA/m2 dan densitas daya sebesar 109,61 mW/m2 diperoleh pada pH 7. Semakin banyak volume suspensi Candida fukuyamaensis sebanding dengan energi listrik yang dihasilkan terlihat dari densitas arus sebesar 940 mA/m2, 940 mA/m2, 970 mA/m2, dan 970 mA/m2 serta densitas daya 49,82 mW/m2, 72,38 mW/m2, 84,39 mW/m2, dan 109,61 mW/m2 untuk volume Candida fukuyamaensis dari 20 mL hingga 50 mL berturut-turut. Glukosa dan kreatinin merupakan salah satu senyawa dalam urin yang berpotensi menjadi sumber karbon bagi khamir, terlihat dari hasil energi listrik yang dihasilkan lebih besar dibanding menggunakan substrat urin saja. Sistem MFC berbasis urin ini dapat menghasilkan densitas daya yang cukup stabil hingga hari kedua.

The majority of primary energy use for electrical power generation is came from fossil energy (Sujatmiko, 2009).The use of fossil energy could pose problems for the environment. Therefore, it takes an environmentally friendly alternative energy to solve the problem. Microbial Fuel Cell (MFC) is one of the prospective alternative energy and eco-friendly. In this study, urine is used as fuel and Candida fukuyamaensis is used as a biocatalyst on the MFC system. Electrode used in this system is doron-doped diamond electrode. Different pH of anode compartemen (pH 5-8) was used to produce electricity optimally. The maximum power and current density 109,61 mW/m2 and 970 mA/m2 were obtained at pH 7. The increasing volume suspension of Candida fukuyamaensis is proportional to the electrical energy generated. This can be seen from the current density 940 mA/m2, 940 mA/m2, 970 mA/m2, and 970 mA/m2, as well as the power density 49.82 mW/m2, 72.38 mWm2, 84.39 mW/m2, and 109.61 mW/m2 for 20 mL to 50 mL volume of Candida fukuyamaensis respectively. Glucose and creatinine is one of the compounds in urine that potentially be source of carbon for Candida fukuyamanesis due the results from the electrical energy generated is greater than using urine only as substrate. This MFC that use urine as substrat can produce a stable power density until the second day.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63766
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanzhola Gusman Riyanto
"Ketergantungan Indonesia pada energi fosil membuat produksi minyak bumi dalam negeri turun drastis sejak tahun 2001 silam sedangkan kebutuhan energi terus meningkat. Selain itu, penggunaan energi fosil dapat menimbulkan permasalahan bagi lingkungan. Oleh karena itu, dibutuhkan suatu energi alternatif yang ramah lingkungan untuk mengatasi masalah tersebut. Microbial Fuel Cell (MFC) merupakan salah satu sumber energi alternatif yang prospektif untuk dikembangkan dan ramah lingkungan. Pada penelitian ini, elektroda boron-doped diamond digunakan sebagai elektroda kerja dan khamir Candida fukuyamaensis digunakan sebagai biokatalis pada sistem MFC. Untuk memperoleh energi listrik yang optimum dilakukan variasi pH pada kompartemen anoda dari pH 6,5-7,5 dan variasi konsentrasi mediator dari 10-100 μM. Energi listrik maksimum yang dihasilkan sebesar 396,2 mW/m2 dan 310 mA/m2 pada kondisi pH 7,5 dengan konsentrasi mediator 10 μM.

The dependency of fossil energy in Indonesia may cause crude oil production decreased drastically since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environment problems. Therefore, we need a alternative energy that environment friendly as solution for these problems. Microbial fuel cell is one of prospective alternative energy source to be developed and environment friendly. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartmen (pH 6,5-7,5) and mediator consentration (10-100 μM) was used to produce electricity optimally. The maximum power and current density 396,2 mW/m2 and 310 mA/m2, for MFC using pH 7,5 at anode compartment and methylene blue concentration at 10 μM respectively.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60607
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
"ABSTRAK
Kebutuhan akan listrik di Indonesia semakin meningkat, sementara bahan bakar fosil, yang selama ini menjadi sumber energi utama semakin menipis setiap tahunnya. Sumber energi pengganti yang lebih ramah lingkungan serta efisien sangat diperlukan. Fuel cell dapat mengkonversi energi kimia menjadi listrik, panas, dan air. Urea yang terdapat dalam urin merupakan salah satu komponen yang bisa digunakan sebagai bahan bakar fuel cell. Pada urea terdapat ikatan nitrogen-hidrogen yang mudah diputuskan dan menghasilkan dua molekul gas hidrogen. Apabila gas hidrogen tersebut dilepaskan maka akan menghasilkan listrik. Pada penelitian ini boron-doped diamond BDD termodifikasi dengan Nikel-Kobalt digunakan sebagai elektroda untuk produksi energi listrik dalam fuel cell. Modifikasi BDD dilakukan dengan teknik elektrodeposisi menggunakan 40 mM larutan Ni NO3 2 dan CoCl2 dengan perbandingan 4:1. Hasil pengukuran menunjukkan bahwa densitas daya sebesar 0,1429 mW cm-1 dapat diperoleh selama satu jam pengukuran dalam suhu ruang. Hasil tersebut didapatkan ketika digunakan urea 0,33 mol L-1 dan KOH mol L-1 pada ruang anoda dan H2O2 2 mol L-1 dalam H2SO4 2 mol L-1 pada ruang katoda. Dengan menggunakan kondisi yang sama, pengujian urin sebagai pengganti urea pada ruang anoda menghasilkan daya sebesar 0,0003 mW cm-1.
"
"
"ABSTRACT
"
The need for electricity in Indonesia is increasing while fossil fuels, which have been the main source of energy, are depleting every year. Therefore it is necessary to find another energy sources that are more environmentally friendly and efficient. Fuel cells can convert chemical energy into electricity, heat, and water. Urea contained in urine is one component that can be used as fuel fuel cell. In urea there is an easy to devide nitrogen hydrogen bond, which produces two molecules of hydrogen gas. When the hydrogen gas is released it will generate electricity. In this study, nickel cobalt modified BDD was employed as an electrode to produce electrical energy in the fuel cell. The modification was performed by electrodeposition using 40 mM Ni NO3 2 and CoCl2 solutions in a ratio of 4 1. The power density of 0.1429 mW cm 1 in one hour measurement at a room temperature. The results were obtained when 0.33 mol L 1 urea in 2 mol L 1 KOH was used as a fuel in in the anode chamber, while 2 mol L 1 H2O2 in 2 mol L 1 H2SO4 was used in the cathode chamber. Replacing of urea with urine in the anodic chamber produces a power of 0.0003 mW cm 1."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachryan Zuhri
"The microbial desalination cell (MDC) is a modification of the microbial fuel cell (MFC) system. The microbial desalination cell is a sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during the oxidation process of organic matter. In this study, tempe wastewater will be used as a substrate. Methylene blue (MB) at concentrations of 100 ?M, 200 ?M, and 400 ?M in the anolyte is added as a redox mediator, and the effect on electricity production and desalination performance are evaluated. The average power density increases by 27.30% and 54.54% at MB concentrations of 100 ?M and 200 ?M, respectively. On the other hand, the increase of the MB concentration in the anolyte results in a decrease in the salt removal percentage. The observation made using a scanning electron microscope showed the presence of MB adsorption on the surface of the anion exchange membrane (AEM) and is suspected to be the cause of the disruption of anion transfer between MDC chambers causing a decrease in the salt removal percentage."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:6 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fadhli Halim
"Dalam simulasi ini, dilakukan pemodelan dan simulasi Proton Exchange Membrane (PEM) fuel cell dengan pendekatan 3 dimensi 2 fasa, yaitu fasa gas dan fasa padatan dengan bentuk channel serpentine. Persamaan model yang diturunkan meliputi persamaan kontinuitas, persamaan momentum, persamaan energi persamaan transport ion dan persamaan current density. Kesemua persamaan ini dibedakan antara fasa padatan dan fasa gas. Fasa padatan terjadi pada GDL, Catalyst dan membrane baik disisi anode maupun cathode. Scdangkan fasa gas hanya terjadi pada Gas Channel anode dan Gas channel cathode. Penyelesaian numeris model menggunakan perangkat lunak MATLAB™ 6.0. Karena terlalu sulitnya melakukan pemecahan dengan menggunakan MATLABTM pada daerah perhitungan 3 dimensi 2 fasa dan dalam geometri yang komplek, maka model disederhanakan menjadl 2 buah model I dimensi, yaitu model pada sumbu y (lebar) dan model pada sumbu z{ketebalan). Hasil model dari penyederhanaan model kesumbu y dldapat profil kecepatan. konsentrasi, tekanan, temperatur. current density, tegangan ionik. Model 1 dimensi kearah sumbu y ini hanya dapat diselesaikan pada lebar 50 cm, jika melebihi lebar ini model tidak dapat diselesaikan karena menghasilkan sebuah matrik Jacobian dari metoda Newton-Raphson yang singular, hal ini disebabkan karena persamaan current density yang sangat stiff. Sedangkan hasil dari penyederhanaan model kesumbu z..."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49523
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irnawati Hapida
"Modifikasi elektroda BDD dengan organoclay HDTMA-bentonit dilakukan untuk meningkatkan sensitivitas elektroda BDD terhadap deteksi senyawa fenol pada analisis voltametri siklik. Organoclay merupakan material yang mempunyai daya adsorpsi tinggi terhadap polutan organik. Sedangkan elektroda BDD merupakan elektroda dengan berbagai kelebihan diantaranya arus blanko yang rendah dan jangkauan potensial yang lebar. Permukaan elektroda BDD dilapisi dengan campuran organoclay HDTMA-Bentonit dan karbon dengan memvariasikan perbandingan massa keduanya, yaitu pada perbandingan organoclay dan karbon 1:2, 1:3 dan 1:4, serta variasi KTK organoclay yaitu 1 dan 2 KTK. Pada pengukuran fenol dalam larutan NaCl 0.1 M, hasil optimum ditunjukkan pada perbandingan organoclay dan karbon 1:3 pada organoclay 2 KTK dengan sensitivitas sebesar 0.0042 mM/mA. Arus dari hasil oksidasi fenol pada elektroda BDD+OC 2 KTK+CP lebih tinggi dari elektroda BDD yang tak termodifikasi organoclay dengan batas deteksi sebesar 0.017 mM dan reproducibility sebesar 7.181 %.

Modification of BDD electrode with organoclay HDTMA-Bentonite is made to improve sensitivity of BDD electrode for detecting phenol through the analysis of cyclic voltammetry analysis. Organoclay is a material with high adsorption of organic compounds due to its hydrophilic character. While the BDD electrode is an electrode with many of advantages including current and capable of forming a wide potential range. BDD electrode surface is coated with mixture of organoclay HDTMA-Bentonite and carbon powder with variation of mass ratio (1:2, 1:3 and 1:4) and variation of CEC of organoclay (1 CEC and 2 CEC). Optimum result of phenol measurement in 0.1 M NaCl solution are obtained in 1:3 ratio of organoclay and carbon at 2 CEC organoclay with a sensitivity of 0.0042 mM/mA. Current from oxidation phenol on BDD+OC 2 CEC+CP electrode is higher than BDD electrode without modification. BDD+OC 2 CEC+CP electrode has limit of detection of 0.017 mM and 7.181 % reproducibility.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43635
UI - Skripsi Open  Universitas Indonesia Library
cover
Desti Octavianthy
"Indonesia yang memiliki jumlah kota sebanyak 93 kota yang tersebar di banyak provinsi merupakan konsumen energi terbesar di Asia Tenggara yaitu sebesar 36% dari kebutuhan energi kawasan. Selain tingginya permintaan energi, isu lain yang krusial adalah tingginya produksi limbah di Indonesia, terutama pada daerah perkotaan. Penelitian ini dilakukan untuk memperoleh skema teknologi Waste to Energy (WtE) yang dapat diaplikasikan dan paling optimum dalam menghasilkan LCOE dan emisi GHG yang minimum melalui optimisasi multi objektif.
Teknologi yang digunakan di dalam penelitian ini adalah insinerasi, gasifikasi, anaerobic digestion, dan pirolisis dengan teknologi pembangkitan listrik menggunakan gas engine, gas turbin, serta teknologi fuel cell, yakni Solid Oxide Fuel cell (SOFC) dan Molten Carbonate Fuel cell (MCFC). Produksi bahan bakar hidrogen untuk fuel cell menggunakan proses Reforming. Penelitian dilakukan dengan meninjau aspek teknis melalui simulasi produksi listrik dari limbah padat perkotaan di kota Depok dengan menggunakan software ASPEN PLUS.
Dari aspek lingkungan, dilakukan analisis faktor emisi yang dihasilkan dari berbagai teknologi proses WtE melalui metode Life Cycle Assessment (LCA). Dari segi ekonomi, dilakukan perhitungan Levelized Cost of Electricity (LCOE) WtE. Emisi total dan LCOE merupakan fungsi objektif pada optimisasi multi objektif yang dilakukan dengan menggunakan software General Algebraic Modelling System (GAMS).
Hasil penelitan menunjukkan bahwa teknologi digesti anaerob dengan turbin gas sebagai teknologi pembangkitan merupakan teknologi WtE yang optimum pada tahun 2020-2035. Pada tahun 2035 hingga tahun 2050, teknologi gasifikasi dengan SOFC merupakan teknologi yang optimum dari segi teknis, ekonomi, maupun lingkungan. Penelitian ini diharapkan mampu menjadi inspirasi dan membawa pengaruh terhadap perbaikan sistem konversi limbah menjadi energi yang ada di kota Depok.

Indonesia, which has a total of 93 cities in many provinces, is the largest energy consumer in Southeast Asia, around 36% of the region`s energy needs. Besides the high demand for energy, another crucial issue is the high production of waste in Indonesia, especially in urban areas. This research was carried out to obtain the Waste to Energy (WtE) technology scheme that can be applied and optimum in producing minimum LCOE and GHG emissions through multi-objective optimization.
The technologies used in this study are incineration, gasification, anaerobic digestion, and pyrolysis with power generation technology which using gas engines, gas turbines, and fuel cell technology, namely Solid Oxide Fuel cell (SOFC) and Molten Carbonate Fuel cell (MCFC). The production of hydrogen fuel for fuel cells uses the Reforming process. The study was conducted by reviewing the technical aspects through simulating electricity production from municipal solid waste in Depok using the ASPEN PLUS software.
From the environmental aspect, emission factor analysis was produced from various WtE process technologies through the Life Cycle Assessment (LCA) method. From an economic standpoint, Levelized Cost of Electricity (LCOE) of WtE is calculated. Total emissions and LCOE are objective functions in multi-objective optimization that carried out using General Algebraic Modeling System (GAMS) software.
The research results show that anaerobic digestion technology with gas turbines as generation technology is the optimum WtE technology in 2020-2035. In 2035 until 2050, gasification technology with SOFC is the optimum technology from the technical, economic and environmental aspects. This research is expected to be able to inspire and influence the improvement of waste conversion into energy systems in the city of Depok.This research is expected to be able to inspire and influence the improvement of the waste conversion into energy systems in Depok.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53968
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>