Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 137574 dokumen yang sesuai dengan query
cover
Lilik Widiastuti
"Sebuah graf roda berarah yang siklik berorder dapat direpresentasikan melalui matriks antidjacency yang dinyatakan dengan dan matriks adjacency yang dinyatakan dengan. Matriks antiadjacency dan adjacency adalah matriks persegi yang entrinya hanya 0 dan 1. Pada matriks adjacency dari suatu graf berarah, entri 1 menyatakan terdapat suatu busur berarah yang menghubungkan simpul ke simpul, sedangkan entri 0 menyatakan tidak ada busur berarah yang menghubungkan simpul ke simpul. Sementara pada matriks antiadjacency, menyatakan hal yang sebaliknya. Secara umum, setiap koefisien pada polinomial karakteristik dari matriks antiadjacency suatu graf berarah terkait dengan lintasan Hamilton, sementara setiap koefisien pada polinomial karakteristik dari matriks adjacency dari suatu graf berarah tidak terkait dengan lintasan Hamilton. Pada penelitian ini dibuktikan bahwa setiap koefisien pada polinomial karakteristik dari matriks maupun matriks memiliki sifat yang sesuai dengan keumuman tersebut. Selain itu matriks antiadjaceny dan adjacency dari graf roda berarah yang siklik, masing-masing memiliki nilai-nilai eigen yang bernilai real dan nilai-nilai eigen yang kompleks. Ternyata juga diperoleh bahwa nilai eigen kompleks sama dengan negatif dari nilai eigen kompleks.

A directed cylic wheel graph with order, can be represented by the antiadjacency matrix that denoted by and the adjacency matrix that denoted by. The antiadjacency and the adjacency matrix are square matrices that has entries 0 and 1. In the adjacency matrix of a directed graph, the entry 1 denotes there is an directed edge that connects the vertex to the vertex, while the entry 0 denotes there are no directed edges that connect the vertex to the vertex. While in the antiadjacency matrix, those entries denote the otherwise. In general, every coefficient of characteristic polynomial of antiadjacency matrix of a directed graph has relation with the Hamiltonian path, while every coefficient of characteristic polynomial of adjacency matrix of a directed graph does not. In this research, it is proved that every coefficient of the characteristic polynomial of or has properties that are in accordance with the generality. In addition the antiadjacency and the adjacency matrix of directed cyclic wheel graph, each of them has real and complex eigenvalues. It is also obtained that the complex eigenvalues of equals to the negative of the complex eigenvalues of.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qomaruzzaman
"Graf berarah adalah pasangan himpunan simpul yang tak kosong dan himpunan busur berarah yang merupakan himpunan pasangan terurut dari dua simpul. Graf berarah siklik adalah graf yang setidaknya memiliki satu subgraf lingkaran berarah siklik, yaitu graf lingkaran berarah yang busur berarahnya melewati setiap simpul masing-masing satu kali, kecuali simpul awal dan simpul akhir. Graf kecebong berarah unisiklik adalah graf yang dibentuk dengan menyambungkan salah satu simpul dari graf lingkaran dengan simpul pada ujung dari graf lintasan untuk bilangan asli m ≥ 3 dan n ≥ 1. Graf kecebong berarah unisiklik yang dibahas pada penelitian ini adalah graf kecebong yang seluruh simpul pada bagian lingkarannya masing-masing memiliki satu tetangga masuk dan satu tetangga ke luar, serta arah pada bagian lintasannya keluar dari salah satu simpul pada bagian lingkaran menuju ke ujung ekor. Matriks antiketetanggaan adalah salah satu representasi graf berarah berdasarkan ada atau tidaknya hubungan satu simpul dengan simpul lainnya. Pada penelitian ini, dicari bentuk umum koefisien-koefisien polinomial karakteristik dan nilai-nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik. Untuk mencari bentuk umum polinomial karakteristik matriks antiketetanggaan dari graf kecebong berarah unisiklik, dilakukan pencarian pola polinomial karakteristik berdasarkan banyak simpul atau banyak busurnya, pengelompokkan tipe-tipe subgraf terinduksi menjadi asiklik dan siklik, serta pembuktian dengan teorema-teorema terkait. Sementara itu, untuk mencari bentuk umum nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik dilakukan pemfaktoran polinomial dengan metode Horner dan mencari akar bilangan kompleks. Koefisien-koefisien polinomial karakteristik matriks antiketetanggaan dari graf kecebong berarah unisiklik memiliki tiga nilai yang berbeda dan nilai-nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik dibagi menjadi kasus ganjil dan kasus genap.

A directed graph is a pair of nonempty finite set of vertices and set of directed edges which is set of ordered pairs of two vertices. A directed cyclic graph is a directed graph that has at least one directed cycle graph, that is a directed cycle graph with the direction passes through each vertex once, except at the end vertex. The directed unicyclic tadpole graph is the graph created by concatenating one of vertex of cycle graph with end vertex of path graph for integers m ≥ 3 and n ≥ 1. The directed unicyclic tadpole graph discuss in this research is a tadpole graph which is all vertices in the cycle have each one in-neighbour and one out-neighbour, and the path subgraph has direction from the vertex in the cycle subgraph to end of tail. Antiadjacency matrix is one of directed graph representation based on whether or not there is a relation between one vertex with the others. In this research, the general form of coefficients of characteristic polynomial and eigenvalues of the antiadjacency matrix of the directed unicyclic tadpole graph are proved. To find the general form of coefficients of the characteristics polynomial of antiadjacency matrix of the directed unicyclic tadpole graph, by forming patterns of coefficients of characteristic polynomial based on amount of vertices or edges, grouping of types of induced subgraphs into acyclic and cyclic, and verify with related theorems. Meanwhile, to find the general form of eigenvalues of antiadjacency matrix of directed unicyclic tadpole graph, by factorization its characteristic polynomial using Horner method and root of complex number method. The coefficients of the characteristic polynomial of directed unicyclic tadpole graph consist of three distinct values and the eigenvalues of directed unicyclic tadpole graph are divided into odd case and even case."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Putra Okfradifa
"

Graf berarah G didefinisikan sebagai pasangan terurut dari himpunan (V,E) yang ditulis dengan notasi G=(V,E) dimana V merupakan himpunan berhingga tak kosong yang disebut simpul, dan E adalah himpunan pasangan terurut anggota dari V yang disebut busur. Graf berarah unisiklik adalah graf berarah yang memuat tepat satu subgraf lingkaran. Graf helm berarah unisiklik Hn adalah graf yang diperoleh dari graf roda berarah Wn dengan menambahkan 1 pendant berarah pada tiap simpul lingkaran graf roda. Suatu graf berarah dapat direpresentasikan dalam beberapa bentuk matriks, salah satunya adalah matriks antiketetanggaan. Matriks antiketetanggaan adalah suatu matriks yang setiap entrinya merepresentasikan ada atau tidaknya busur berarah dari suatu simpul kesimpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiketetanggaan graf helm berarah unisiklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiketetanggaan diperoleh dengan menjumlahkan nilai-nilai determinan matriks antiketetanggaan dari semua subgraf terinduksi siklik dan asiklik. Nilai-nilai eigen dari matriks antiketetanggaan dari graf helm berarah unisiklik diperoleh dengan mencari akar-akar dari polinomial karakteristik dengan faktorisasi polinomial


A directed Graph G is defined as ordered pairs from set (V,E) which is represented by notation G=(V,E) where V is a finite nonempty set of vertices and E is a set of ordered pairs of elements of V called edges.  A directed unicyclic graph is a directed graph that has only one directed cycle subgraph. A directed unicyclic helm graph Hn is obtained from a directed wheel graph Wn by adjoining a directed pendant edge at each vertex of the cycle. A directed graph can be represented into  several matrix representations, one of them is the antiadjacency matrix. The antiadjacency matrix is a matrix in which the entries represent whether there is a directed edge from one vertex to another. This paper discusses the characteristic polynomial and eigenvalues of the antiadjacency matrix of the unicyclic helm graph. The general form of the coefficients of the characteristic polynomial that obtained by adding all of the determinants of antiadjacency matrix from each induced acyclic and cyclic subgraphs. The eigenvalues of the antiadjacency matrix of the directed unicyclic helm graph obtained by factorization its characteristic polynomial.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Kamal
"Pengklasteran clustering yang dilakukan dengan menggunakan metode graf disebut dengan pengklasteran graf graph clustering . Pengklasteran graf dengan memperhatikan bobot dapat diselesaikan dengan menggunakan pohon rentangan minimum. Salah satu algoritma yang dapat digunakan untuk menyelesaikan pengklasteran graf berbobot berdasarkan pohon rentangan minimum adalah algoritma maximum standard deviation reduction MSDR . Pada algoritma MSDR tidak perlu ditentukan banyaknya klaster yang terbentuk, karena terdapat perhitungan untuk menentukan banyak klaster secara otomatis. Namun dalam penelitian lanjutan algoritma MSDR cukup sulit dikerjakan karena sulitnya dalam menentukan nilai kandidat klaster terbaik, sehingga dilakukan modifikasi untuk menentukan nilai -nya. Modifikasi ini disebut dengan modifikasi MSDR MMSDR. Penelitian ini merupakan implementasi dari algoritma MMSDR pada masalah rute penerbangan di Indonesia yang disebut maskapai X, dengan menggunakan input matriks komplemen. Dengan menggunakan input matriks dari komplemen graf didapatkan pengklasteran berdasarkan jarak antar bandara. Penelitian ini juga menganalisis perubahan nilai epsilon dan perubahan matriks input. Hasil analisis menunjukkan bahwa perubahan nilai epsilon tidak mempengaruhi banyaknya klaster dan anggota klaster, sedangkan perubahan matriks input dapat mempengaruhi perbedaan anggota klaster.

Clustering is done by using graph method called graph clustering. Graph clustering with weights can be solved by using a minimum spanning tree. One of the algorithms that can be used to complete a weighted graph clustering based on a minimum spanning tree is the maximum standard deviation reduction MSDR algorithm. In the MSDR algorithm there is no need to determine the number of clusters that are formed, because there are calculaions to determine many clusters automically. However, in advanced research MSDR algorithm is quite difficult to do because of the difficulty in determining the value of best cluster candidates, so modifications are made to determine the value of. This modification is called the modification MSDR MMSDR. This research is an implementation of MMSDR algorithm on flight route problem in Indonesia called airline X, by using input complement matrix. Using the matrix input from the complement graph obtained clustering based on the distance between airports. This research also analyzed changes in epsilon value and changes in input matrix. The results of the analysis show that the change in epsilon value does not affect the number of clusters and clusters members, whereas the change in input matrix may affect the cluster members.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69594
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emhaka Yudhistira
"Misalkan G adalah suatu graf dengan V(G) yang merupakan himpunan simpul tak kosong dan E(G) yang merupakan himpunan busur. Hubungan tetangga antar simpul dalam suatu graf dapat direpresentasikan dalam bentuk matriks yang disebut matriks adjacency, dengan entrinya bernilai 1 apabila terdapat busur di antara dua simpul dan bernilai 0 untuk lainnya. Jika A adalah matriks adjacency dari graf berarah G, maka dapat dibentuk suatu det(xA+I). Pada skripsi ini dijelaskan representasi bentuk det(XA+I) dengan A merupakan matriks adjacency dari graf berarah sederhana.

Let G be a graph with V(G) is a nonempty set of vertices and E(G) is a set of arcs. A graph can be representated by a matrix called adjacency matrix, with its entry equal to 1 if there is an edge between two vertices in and equal to 0 for others. If A is the adjacency matrix of a directed graph , it can be formed det(xA+I). In this Skripsi is given a representation of det(xA+I) with A is an adjacency matrix of simple directed graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yosep Pangky Nugroho Saputra
"Misalkan graf G = (V,E) terdiri dari V, suatu himpunan tak kosong dari simpul dan E, himpunan dari busur. Setiap busur mempunyai paling tidak satu atau dua simpul yang terhubung, atau biasa disebut titik ujung. Pelabelan graceful adalah suatu pemetaan injektif yang menginduksi pemetaan bijektif, dimana, dengan. Matriks adjacency tergeneralisasi adalah suatu matriks bujur sangkar yang entrinya merepresentasikan ada tidaknya busur yang menghubungkan dua simpul dengan label tertentu pada graf. Suatu matriks yang merepresentasikan graf berlabel graceful disebut matriks graceful. Dalam skripsi ini diberikan algoritma untuk mengkonstruksi graf graceful yang baru dengan memodifikasi matriks graceful yang ada. Graf graceful baru hasil konstruksi merupakan kelas graf graceful baru yang belum pernah ditemukan sebelumnya.

Let G = (V,E) be a graph that consist of V, a non empty set of vertices, and E, a set of edges. Every edge connects two vertices which called endpoints. A graceful labeling is an injection that induce bijection, where, with. Generalized adjacency matrix is a square matrix where its entries represent the existency of edges that connect two vertices with certain label in graph. A matrix that represents graceful graph is called graceful matrix. This skripsi gives algorithms for constructing new graceful graphs by modifiying known graceful matrices. The graceful graphs constructed are new, which are not known before."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1558
UI - Skripsi Open  Universitas Indonesia Library
cover
Rostika Listyaningrum
"Misalkan 𝐺 adalah graf berarah asiklik. Matriks adjacency dari graf berarah 𝐺 dengan 𝑉 𝐺 = 𝑣1, 𝑣2, ? , 𝑣𝑛 adalah matriks 𝐴 = 𝑎𝑖𝑗 berukuran 𝑛 × 𝑛 di mana 𝑎𝑖𝑗 = 1, untuk 𝑖 ≠ 𝑗 jika terdapat busur berarah dari 𝑣𝑖 ke 𝑣𝑗 , 𝑎𝑖𝑗 = 0 untuk yang lainnya. Matriks antiadjacency dari graf berarah G adalah matriks 𝐵 = 𝐽 − 𝐴 dengan 𝐽 adalah matriks berukuran n × n yang semua entrinya adalah 1. Pada tesis ini diberikan kaitan nilai eigen terbesar matriks antiadjacency dengan derajat terkecil, derajat terbesar graf berarah asiklik yaitu graf bipartit lengkap berarah 𝐾 𝑟,𝑠 dengan 𝑟, 𝑠 ≥ 1, graf lintasan lengkap berarah 𝐶 𝑃 𝑛 dengan 𝑛 ≥ 3, graf lingkaran berarah asiklik 𝐶𝑛 , dan graf lintasan berarah 𝑃 𝑛. Selain hal tersebut juga diberikan relasi nilai eigen terbesar matriks antiadjacency dengan operasi maksimum dari dua graf berarah asiklik.

Let 𝐺 be a directed acyclic graph. The adjacency matrix of directed graph 𝐺 with 𝑉 𝐺 = 𝑣1, 𝑣2, ? , 𝑣𝑛 is a matrix 𝐴 = 𝑎𝑖𝑗 of order 𝑛 × 𝑛, where 𝑎𝑖𝑗 = 1 for 𝑖 ≠ 𝑗 if there is an arc from 𝑣𝑖 to 𝑣𝑗 , otherwise 𝑎𝑖𝑗 = 0. Antiadjacency matrix of directed graph 𝐺 is a matrix 𝐵 = 𝐽 − 𝐴, with 𝐽 is a matrix of order 𝑛 × 𝑛 with all entries are 1. In this thesis is given relation between the largest eigen value of antiadjacency matrix with degree minimum and degree maximum of directed acyclic graphs that are complete bipartite directed graph 𝐾 𝑟 ,𝑠 with 𝑟, 𝑠 ≥ 1, complete path directed graph 𝐶 𝑃 𝑛 with 𝑛 ≥ 3, acyclic cycle directed graph with 𝑛 ≥ 4 and path directed graph with 𝑛 ≥ 3. In addition, here are also given relation between the largest eigen value of antiadjacency matrix and maximum operation of two directed acyclic graph."
Depok: Universitas Indonesia, 2015
T43809
UI - Tesis Membership  Universitas Indonesia Library
cover
Nanda Anzana
"Matriks antiadjacency dan adjacency adalah contoh matriks yang merepresentasikan suatu graf berarah. Entri-entri dari matriks antiadjacency dan adjacency dari suatu graf berarah merepresentasikan ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency dan adjacency graf friendship berarah siklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiadjacency didapatkan dengan menjumlahkan determinan matriks antiadjacency dari semua subgraf terinduksi baik yang siklik maupun asiklik. Sedangkan bentuk umum dari koefisien-koefisien polinomial karaktersitik dari matriks adjacency didapatkan dengan menjumlahkan nilai determinan matriks adjacency subgraf terinduksi yang siklik saja. Nilai eigen dari matriks antiadjacency dan adjacency dapat berupa bilangan riil dan bilangan kompleks. Nilai eigen diperoleh dengan metode faktorisasi dan subtitusi. Dari hasil penelitian diperoleh bahwa koefisien polinomial karakteristik dan nilai eigen dari matriks antiadjacency dan adjacency dapat dinyatakan dalam fungsi yang bergantung pada jumlah segitiga pada graf friendship berarah siklik.

ABSTRACT
Antiadjacency and adjacency matrices are examples of matrices that represent a directed graph. The entries of the antiadjacency and adjacency matrices of a directed graph represent the presence or absence of directed arcs from one vertex to the others. This undergraduate thesis discusses the polynomial characteristics and eigenvalues of antiadjacency and adjacency matrices of directed cyclic friendship graphs. The general form of the coefficients of the characteristic polynomial of the antiadjacency matrix is obtained by adding the determinant of antiadjacency matrix of all the induced subgraphs, cyclic or acyclic. While the general form of the coefficients of the characteristic polynomial of the adjacency matrix is obtained by adding the determinant of adjacency matrix of the cyclic induced subgraphs. The eigenvalues of the antiadjacency and adjacency matrices can be real or complex numbers. The eigenvalues are obtained by the factorization and substitution methods. The result obtained shows that the characteristic polynomial coefficients and eigenvalues of the antiadjacency and adjacency matrices depend on the number of triangles in the cyclic directed friendship graph.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elvi Khairunnisa
"Sebuah graf adalah pasangan himpunan dengan adalah himpunan tidak kosong dan adalah himpunan mungkin kosong pasangan tidak berurutan dari elemen-elemen . disebut dengan simpul dan disebut dengan busur. Pelabelan graceful didefinisikan sebagai pemberian label pada simpul suatu graf G yang memenuhi fungsi injektif dari himpunan simpul ke himpunan bilangan bulat tak negatif sedemikian sehingga setiap busur xy di G mendapat label , maka label setiap busur akan berbeda. Graf bunga aster merupakan graf yang dibentuk dari graf lingkaran dengan menghubungkan graf lintasan pada dua simpul yang bertetangga. Graf korona bunga aster merupakan graf yang dibentuk dari graf bunga aster dengan menambahkan r simpul daun pada setiap simpulnya. Pada tesis ini dibahas graf yang mempunyai pelabelan graceful atau tidak mempunyai pelabelan graceful pada graf bunga aster untuk dan graf korona bunga aster untuk dan.

A graph is a sets where is the non empty set and is the set of possibly empty of non sequential elements . is called as vertices and is called as edges. Graceful labeling is defined as labeling the vertices of graph that satisfies the injective function from the set of vertices to the set of non negative integers such that each of the xy edges in G gets label , then the label of each vertices will be distinct. An aster flower graph is a graph which generated from the cycle graph by connecting the path graph to the two adjacent vertices. A corona product of aster flower graph is a graph which generated from an aster flower graph by adding r leaf vertices on each vertex. This thesis discusses graphs that have graceful labeling or doesn rsquo t have graceful labeling on aster flower graph for and corona product of aster flower graph for and.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50683
UI - Tesis Membership  Universitas Indonesia Library
cover
Siwi Purwitasari
"Misalkan G = (V(G), E(G)) suatu graf sederhana. Didefinisikan suatu pewarnaan busur c: E(G) => {1,2, ..., k}, dengan k E N. Suatu lintasan antara simpul u dan v di G dengan pewarnaan c disebut lintasan-(u-v) pelangi, jika tidak ada dua busur di lintasan-(u-v) yang memiliki warna yang sama. Untuk dua simpul u dan v di G, geodesik pelangi-(u-v) adalah lintasan pelangi dengan panjang d(u,v), dimana d(u,v) disebut panjang lintasan-(u-v) terpendek di G. Pewarnaan pelangi kuat lokal-d didefinisikan sebagai pewarnaan busur yang setiap dua simpul dengan jarak maksimum d dapat dihubungkan oleh geodesik pelangi dan bilangan yang menyatakan banyak warna minimum dalam suatu pewarnaan pelangi kuat lokal-d dimana nilai d berada pada interval 1 3 dan r >1 dan graf CnPs adalah graf yang diperoleh dengan mengambil satu salinan dari Cn dan sebanyak n salinan dari Ps, dan menghubungkan setiap simpul dari salinan ke-i dari Ps dengan simpul ke-i dari Cn dengan n > 3 dan s > 2. Tesis ini memaparkan hasil tentang bilangan keterhubungan pelangi kuat lokal-d dari graf CnKr dan graf CnPs dengan n > 3, r >1, s >2 untuk d = 2 dan d = 3.

Let G = (V(G), E(G)) be a simple graph. Define an edge coloring c: E(G)=> {1,2, ..., k}, with k E N. A path between vertices u and v in G is called rainbow (u-v)-path if we can have an edge coloring such that every edge in the path has different color. For two vertices u and v of G, a rainbow (u-v)-geodesic is a rainbow path of length d(u,v), which d(u,v) is called the shortest (u-v)-path length in G. The d-local strong rainbow coloring is defined as edge coloring that any two vertices with a maximum distance d can be connected by a rainbow geodesic and the smallest number of colors in d-local strong rainbow coloring such that any two vertices with distance at most d, 1 3 and r > 1 and the graph CnPs is defined as the graph obtained from Cn and Ps by taking one copy of Cn and n copies of Ps and connecting each vertex from the ith-copy of Ps with the ith-vertex of Cn for n > 3 and s >2. This thesis presents some results regarding the d-local strong rainbow connection number of the graph CnKr and graph CnPs with n > 3, r > 1 and s > 2 for d = 2 and d =3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>