Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 132171 dokumen yang sesuai dengan query
cover
Joshua Jesse Karubaba
"Penelitian ini bertujuan untuk mengeksplorasi kemungkinan menciptakan nilai tambah yang sangat besar pada sumber daya sabut kelapa yang selama ini dianggap sebagai limbah. Salah satu nilai tambah yang dapat dihasilkan dari sabut kelapa adalah bio-oil yang kaya akan senyawa aromatik. Senyawa kaya aromatik dalam bio-oil telah berhasil diproduksi melalui proses pirolisis katalitik dengan bantuan katalis ZSM-5 terimpregnasi logam Nikel dan Seng. Pirolisis adalah perengkahan termal non-oksigen dari bahan organik.
Produk pirolisis atau dikenal sebagai bio-oil digunakan sebagai bahan bakar alternatif. Namun, seiring perkembangan zaman bio-oil dapat digunakan sebagai bahan baku dalam proses pembuatan banyak produk petrokimia karena memiliki senyawa aromatik. Aromatik adalah zat kimia berbentuk cincin yang dapat ditemukan dalam biomassa yang kaya lignoselulosa. Aromatik bio-oil diperoleh dari proses pirolisis katalitik limbah sabut kelapa dengan menggunakan bantuan katalis untuk memaksimalkan komposisi senyawa aromatik. Sabut kelapa dipotong dan digiling dalam persiapan-awal ke ukuran yang diinginkan. Katalis yang diimpregnasi Zn/ZSM-5 dan Ni/ZSM-5 yang telah dikarakterisasi oleh XRD (X-Ray Diffraction) digunakan untuk memaksimalkan yield dari senyawa aromatik, juga luas permukaan spesifik katalis menggunakan analisis Branauer Emmet Teller (BET).
Proses pirolisis katalitik berlangsung di reaktor silinder unggun diam yang dilengkapi dengan tungku sebagai sumber panas. Produk yang keluar dari reaktor dikondensasi dengan menggunakan air dingin dan aseton. FTIR (Fourier Transform Infrared) dan GCMS (Gas Chromatography-Mass Spectrometer) berfungsi sebagai instrumen analitik untuk mengidentifikasi keberadaan dan kuantitas kelompok aromatik dalam bio-oil. BTX (Benzena, Toluena dan Xilena) sebagai senyawa aromatik dalam bio-oil telah diidentifikasi melalui analisis FTIR. Nikel dengan 5% berat loading adalah komponen aktif utama dalam katalis ZSM-5 yang diimpregnasi karena kinerjanya dalam menghasilkan yield tertinggi dari bio-oil aromatik sebesar 38,90%, pada suhu reaksi 450°C. Senyawa kaya aromatik dari bio-oil sebagai hasil penelitian ini dapat dianggap sebagai penemuan baru dalam menciptakan nilai tambah yang sangat besar pada sumber daya alam asli Indonesia, yang memiliki risiko minimal terhadap manusia dan lingkungan, dan dapat didaur ulang tanpa polusi.


This study is aimed to explore the possibility of creating enormous added value on coconut fiber resources which was so far considered as wastes. One of the added value of coconut fiber that can be created is bio-oil which rich in aromatic compounds. The rich-aromatic compounds within bio-oil has been produced successfully by the catalytic pyrolysis process which supported by impregnated ZSM-5 catalyst of Nickel and Zinc. Pyrolysis is a non-oxygen thermal cracking of organic materials.
Pyrolysis product or known as bio-oil is used as an alternative fuel. However, as the era progresses bio-oil can be used as raw materials in manufacturing process of many petrochemical products because it has aromatic compounds. Aromatic is a shaped-ring chemical substance that can be found in lignocellulosic-rich biomass. Aromatic bio-oil is obtained from catalytic pyrolysis process of waste coconut fiber with the aid of using catalysts to maximize the composition of aromatic compounds. Coconut fiber is cut and grind in pre-treatment to the desirable size. Impregnated catalysts Zn/ZSM-5 and Ni/ZSM-5 that have been characterized by XRD (X-Ray Diffraction) are used to maximize the yield of aromatic compounds, and also specific surface area using Branauer Emmet Teller (BET) analysis.
The catalytic pyrolysis process takes place in a fixed bed turbular reactor equipped with a furnace as a heat source. The product coming out of the reactor is condensed by using cold water and aceton. FTIR (Fourier Transform Infrared) and GCMS (Gas Chromatography-Mass Spectrometer) serve as analytical instruments in order to identify the presence and the quantity of aromatic group in bio-oil. BTX (Benzene, Toluene and Xylene) as aromatic compounds within bio-oil has been identified through the FTIR analysis. Nickel of 5% weight loading is the main active component within impregnated ZSM-5 catalysts due to its performance in producing the highest yield of aromatic bio-oil as of 38.90%, at the reaction temperature of 450°C. The aromatic-rich compounds of bio-oil as results of this study could be considered as a new invention of creating enormous added value on Indonesia original natural resources, which has a minimal risk to humans and the environment, and can be recycled without pollution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervandy Haryoprawironoto
"Sebagian besar komoditas di bidang pertanian seperti jerami padi dan tongkol jagung menghasilkan biomassa yang dapat dimanfaatkan sebagai sumber bahan baku industri petrokimia. Jerami padi dan tongkol jagung merupakan biomassa dengan jumlah berlimpah di Indonesia. Jerami padi dan tongkol jagung mengandung komponen lignoselulosa yang membuatnya dapat dimanfaatkan untuk menghasilkan toluena. Toluena adalah hidrokarbon aromatik yang digunakan secara luas dalam bahan baku industri dan juga sebagai bahan pelarut bagi industri lainnya. Bio-oil mengandung senyawa fenolat salah satunya cresol metil-fenol yang dapat diubah menjadi toluena melalui proses konversi katalitik. Bio-oil dari hasil pirolisis biomassa yang berbeda jenis akan memberikan yield bio-oil yang berbeda karena adanya perbedaan karakteristik seperti kandungan volatile matter, ash, dan fixed carbon. Bio-oil hasil pirolisis tongkol jagung menghasilkan yield bio-oil 44.16 berat, lebih besar dari jerami padi yakni 22.46 berat. Komposisi selulosa, hemiselulosa, dan lignin yang berbeda pada jerami padi dan tongkol jagung akan memberikan distribusi kelompok senyawa pada bio-oil -nya yang berbeda. Bio-oil hasil pirolisis jerami padi mengandung tiga kelompok senyawa terbesar yakni fenol 19.01 berat, furan 12.92 berat, dan keton 12.54 berat. Sedangkan tiga kelompok senyawa terbesar pada bio-oil hasil pirolisis tongkol jagung adalah fenol 24.02 berat, keton 15.08 berat, dan furan 11.67 berat. Bio-oil hasil pirolisis jerami padi dan tongkol jagung dikonversi menjadi toluena melalui konversi katalitik dengan komposisi katalis B2O3/?-Al2O3 dan suhu reaksi yang divariasikan. Hal tersebut dilakukan untuk mengetahui komposisi katalis dan suhu reaksi yang dapat menghasilkan yield toluena optimum. Komposisi katalis B2O3 dalam paduan katalis yang digunakan adalah 0 berat, 15 berat, dan 30 berat dengan suhu reaksi yang digunakan adalah 400°C dan 450°C. Yield toluena optimum sebesar 33.01 berat dihasilkan pada konversi bio-oil hasil pirolisis tongkol jagung dengan komposisi katalis yang digunakan terdiri atas 30 B2O3 dan 70 ?-Al2O3 pada suhu reaksi 450°C.

Most commodities in agriculture such as rice straw and corn cobs produce biomass which can be utilized as a source of petrochemical feedstock. Rice straw and corn cob are type of biomass with abundant amount in Indonesia. Rice straw and corncob contain lignocellulosic components that make them useful for toluene production. Toluene is an aromatic hydrocarbon that is widely used in industrial raw materials as well as solvents for other industries. Bio oil contains phenolic compounds, one of them is cresol methyl phenol which can be converted to toluene through a catalytic conversion process. Bio oil from different types of biomass pyrolysis will yield different bio oil yields due to its different characteristics including volatile matter, ash, and fixed carbon content. Bio oil from corncob pyrolysis yields 44.16 wt of bio oil yield, greater than that of rice straw 22.46 wt. Different cellulose, hemicellulose, and lignin compositions on rice straw and corncob will give different composition of components found in bio oil. Bio oil from pyrolysis of rice straw contains the three largest groups of compounds namely phenol 19.01 wt, furan 12.92 wt, and ketone 12.54 wt. While the three largest groups of compounds in bio oils of corncob pyrolysis are phenol 24.02 wt, ketones 15.08 wt, and furan 11.67 wt. Bio oil from pyrolysis of rice straw and corn cobs are converted to toluene by catalytic conversion with the variation of B2O3 Al2O3 catalyst composition and the reaction temperature. This is done to determine the catalyst composition and reaction temperature which can produce the optimum toluene yield. The catalyst composition of B2O3 used in the mixed catalyst was 0 wt, 15 wt, and 30 wt with the reaction temperature used was 400°C and 450°C. The optimum toluene yield of 33.01 wt was produced in the conversion of the corncob pyrolysis bio oil with the catalyst composition used comprising 30 wt B2O3 and 70 wt Al2O3 at reaction temperature of 450°C."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68254
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhila Ahmad Anindria
"Bonggol jagung merupakan salah satu biomassa yang memiliki jumlah yang berlimpah di Indonesia. Dengan pirolisis, bonggol jagung dapat dikonversi menjadi bio-oil yang mengandung senyawa seperti furan, fenol, dan turunannya yang dapat dimanfaatkan sebagai pengekstraksi aromatik pada minyak pelumas mentah. Banyaknya kandungan aromatik pada pelumas dapat mempengaruhi sifat fisik pelumas yang menyebabkan gesekan pada bagian-bagian mesin yang dilumasi. Objektif penelitian ini adalah memperoleh fraksi furan, fenol, dan turunannya dari pirolisis yang dapat dimanfaatkan sebagai pelarut aromatik pada pelumas yang optimal. Pirolisis dilakukan pada reaktor berpengaduk dengan heating rate 5oC/menit, suhu maksimal 500oC, dan dialirkan gas N2 dengan laju alir 900 mL/menit. Bio-oil hasil pirolisis mengandung berbagai senyawa yang tidak diinginkan, salah satu yang paling dominan adalah asam karboksilat 37, sementara kandungan furan 13 dan fenol 7. Isolasi fraksi furan dan fenol dilakukan dengan penambahan NaOH dan sentrifugasi untuk menghasilkan dua fasa terpisah, yaitu fasa asam karboksilat serta fasa furan dan fenol. Fasa furan dan fenol mengandung furan 13 dan fenol 27 serta tidak ada kandungan asam karboksilat. Ekstraksi aromatik dilakukan dengan menggunakan fasa furan dan fenol dan pelumas mesin yang dicampur dengan p-xylene sebagai senyawa model aromatik pada suhu konstan 40oC selama 60 menit. Hasil eksperimen menunjukkan bahwa semakin besar rasio berat pelarut terhadap pelumas, sisa aromatik yang terdapat pada rafinat semakin sedikit, dan semakin sedikit jumlah aromatik awal pada pelumas, efektivitas melarutkan aromatik semakin besar.

Corncob is one of the biomass which has abundant amount in Indonesia. Through pyrolysis, corncobs can be converted into bio oils containing compounds such as furans phenol, and its derivatives which can be utilized as extractants of aromatics in raw lubricant oil. In high temperature, the aromatic content in engine lubricants can affect physical properties of the lubricants causing wearing on engine parts. The object of this research is to utilize the fraction of furan, phenol, and its derivatives from pyrolysis as an optimum aromatic extractant. Pyrolysis has been done in a stirred tank reactor with a heating rate of 5oC min, a maximum temperature of 500oC and flow rate N2 of 900mL min. Bio oil from pyrolysis contains many undesired compounds, one of which was carboxylic acid as the predominant compounds 37, while furan content was 13 and phenol 7. Isolation of furan and phenol fractions has been achieved by the addition of NaOH and then centrifugation to produce two separated phases the carboxylic acid phase and the furan and phenol phase. Furan and phenol phase contains 13 furan and 27 phenol with no carboxylic acid content. The aromatic extraction was performed using furan and phenol phase and an engine lubricant mixed with p xylene as an aromatic compound model at constant temperature of 40oC for 60 minutes. Experiment result shows that the greater the weight ratio of solvent to lubricant, the lower is the aromatic residual present in the raffinate and the lower the initial aromatic content in lubricant, the greater the effectiveness of aromatic extraction."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jelita Helianisa
"Tempurung kelapa merupakan biomassa hasil samping pengolahan buah kelapa yang pemanfaatannya belum optimal karena dianggap sebagai limbah tak bernilai. Dalam proses pengembangannya, limbah tempurung kelapa memiliki peluang yang besar untuk dimanfaatkan sebagai produk dengan nilai ekonomi tinggi seperti BTX (Benzena, Toluena, Xilena) karena memiliki building block berupa senyawa aromatik. Proses pirolisis termal dan perengkahan katalitik biomassa tempurung kelapa telah dilakukan dalam reaktor unggun diam untuk menghasilkan senyawa BTX masing – masing pada suhu 550oC dan 500oC. Katalis CaO/HZSM-5 yang disintesis melalui teknik pencampuran fisik dan impregnasi basah dengan perbandingan 2:1 terhadap umpan bio-oil digunakan pada proses upgrading perengkahan katalitik. Katalis CaO/HZSM-5 dipilih karena penggunaan kedua katalis tersebut secara simultan memberikan efek sinergis dalam menghasilkan senyawa monoaromatik BTX. Penambahan CaO terbukti mampu meningkatkan ukuran pori rata – rata katalis setelah termodifikasi sehingga dapat menurunkan kemungkinan deaktivasi katalis dengan mencegah pembentukan kokas. Karakterisasi BET terhadap katalis menunjukkan bahwa diameter pori katalis CaO/HZSM-5 pencampuran fisik dan impregnasi basah secara berturut – turut sebesar 2,14 nm dan 5,24 nm. Selanjutnya, bio-oil melalui karakterisasi FTIR dimana produk upgrading bio-oil tempurung kelapa didominasi oleh senyawa aromatic, phenol, dan alcohol. Berdasarkan karakterisasi GC-MS, katalis CaO/HZSM-5 hasil pencampuran fisik memberikan kinerja optimal dimana yield BTX tertinggi yang diperoleh sebesar 45,85%. Penelitian ini diharapkan dapat memberikan solusi alternatif dalam mengurangi ketergantungan pada bahan bakar fosil
Coconut shell is a by-product of processing coconuts whose utilization is not optimal because it is considered as worthless waste. In the development process, coconut shell waste has an excellent opportunity for being utilized as a product with high economic value as BTX (Benzene, Toluene, Xylene) due to its high content of lignin which is the building block in the form of aromatic compounds. Thermal pyrolysis and catalytic cracking of coconut shell biomass have been carried out in a fixed bed reactor to produce BTX compounds at 550oC and 500oC, respectively. CaO/HZSM-5 catalyst was synthesized using physical mixing and wet impregnation technique with a ratio of 2:1 to bio-oil feed in the upgrading process of catalytic cracking. CaO/HZSM-5 catalyst was chosen because the use of the two catalysts simultaneously provides a synergistic effect in producing BTX compounds. The addition of CaO has proven to increase the average pore size of the catalyst after modification and reduce the possibility of catalyst deactivation by preventing coke formation. The BET characterization of the catalyst showed that the pore diameters of the CaO/HZSM-5 catalyst of physical mixing and wet impregnation were 2,14 nm and 5,24 nm, respectively. Furthermore, FTIR characterization showed the upgrading product of coconut shell bio-oil dominated by aromatic compounds, phenols, and alcohols. Based on the GC-MS characterization, the CaO/HZSM-5 catalyst of physical mixing gave an optimal performance where the highest BTX yield was obtained at 45.85%. This research was expected to provide alternative solutions to reduce dependency on fossil fuels."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chunairil Wijaya
"Levoglucosan adalah sebuah komponen utama yang berbentuk cairan kental dari hasil pirolisis biomassa yang banyak dimanfaatkan sebagai pestisida buatan, growth regulators, macrolide antibiotics dan lain-lain. Biomassa tersusun atas hemisellulosa, sellulosa, lignin dan sejumlah kecil komponen organik yang masing-masing dapat terpirolisis dan terdegradasi dengan laju yang berbeda, mekanisme dan jalur yang berbeda.
Diketahui bahwa, levoglucosan adalah produk yang paling banyak diperoleh dalam pirolisis selulosa dari biomassa. Biomassa yang digunakan dalam penelitian ini adalah cangkang kelapa sawit dan tandan kosong kelapa sawit. Pemilihan biomassa tersebut didasarkan dari komposisi biomassa tersebut yang mengandung > 30 % selulosa. Faktor kondisi operasi pirolisis yaitu holding time dan suhu optimum, telah diteliti sebelumnya dapat mempengaruhi yield levoglucosan.
Pada penelitian ini, metode pirolisis yang dipilih adalah fast pyrolysis. Pemilihan ini dikarenakan levoglucosan akan terbentuk dari depolimerasi selulosa pada tahap awal fast-pyrolysis pada rentang  suhu 315°C-400°C dan setelah itu akan terjadi secondary reaction menghasilkan turunan levoglucosan yaitu furan dan piranosa terdehidrasi.
Dalam penelitian ini, fast pyrolysis dilakukan dalam reaktor unggun tetap dengan konfigurasi looping system pada rentang suhu (450 - 550)°C, laju alir N2 adalah 1500 ml/menit dan 3000 ml/menit serta variasi biomassa adalah 51.3 gram dan 81.3 gram. Analisis levoglucosan didukung dengan instrumen GC-MS.
Hasil levoglucosan pada biomassa tandan kosong sawit tidak diperoleh karena proses pirolisis tidak terjadi sampai lapisan selulosa biomassa sedangkan pada biomassa cangkang sawit diperoleh yield levoglucosan tertinggi pada suhu 500°C dengan holding time 2.4 s yaitu sebesar 2.33 % (g/g) biomassa.

Levoglucosan is a major component in the form of thick liquid from the results of biomass pyrolysis which is widely used as artificial pesticides, growth regulators, macrolide antibiotics and others. Biomass is composed of hemicellulose, cellulose, lignin and a small amount of organic components which each can be hydrolyzed and degraded at different rates, different mechanisms and pathways.
It is known that levoglucosan is the product most obtained from cellulose pyrolysis of biomass. The biomass used in this study is  palm kernel shell and empty palm fruit bunches. The choice of biomass is based on the composition of the biomass containing > 30% cellulose. The factors of pyrolysis operating namely holding time and optimum temperature conditions that have been studied previously, can affect levoglucosan yield.
In this study, the pyrolysis method chosen was fast pyrolysis. This selection is because levoglucosan will be formed from cellulose depolymerization in the early stages of fast-pyrolysis at a temperature range of 315°C-400°C and after that a secondary reaction will occur resulting in levoglucosan derivatives namely furan and dehydrated pyranose.
In this study, fast pyrolysis was carried out in a fixed bed reactor with a looping system configuration in the temperature range (450-550)°C, the flow rate of N2 was 1500 ml/minute and 3000 ml/minute and the biomass variation was 51.3 grams and 81.3 grams. Analysis of levoglucosan was supported by the GC-MS instrument.
The results of levoglucosan in the empty palm fruit bunches biomass were not obtained because the pyrolysis process did not occur until the cellulose layer of biomass while in palm kernel shell biomass was obtained the highest levoglucosan content at 500°C with a holding time of 2.4 s which was 2.33 % (g/g) biomass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miranda Meidistira
"Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.

Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nasim
"Furfural merupakan salah satu senyawa berharga yang memiliki berbagai kegunaan pada industri. Furfural sendiri dapat diperoleh dari biomassa lignoselulosa melalui konversi dari struktur hemiselulosa dan selulosa. Pada proses produksi furfural terdapat permasalahan terkait perolehan senyawa furfural, efeknya terhadap lingkungan serta masih adanya limbah belum dimanfaatkan secara optimal. Selulosa sendiri merupakan salah satu limbah yang dihasilkan pada produksi furfural dari biomassa. Selulosa merupakan salah satu bahan potensial yang dapat dikonversi menjadi furfural melalui metode pirolisis. Pada penelitian ini dilakukan peninjauan terkait proses pirolisis katalitik dengan metode impregnasi pada selulosa menggunakan asam borat untuk memproduksi senyawa furfural. Impregnasi asam borat pada sampel dilakukan untuk meningkatkan perolehan senyawa furfural dengan variasi rasio unsur boron sebesar 0,1 hingga 0,5 terhadap umpan selulosa dengan variasi suhu pirolisis sebesar 450 oC hingga 550 oC. Senyawa fufural yang terkandung pada produk bio-oil diuji menggunakan alat gas chromatography and mass spectrum (GC-MS) untuk menentukan kandungan senyawa furfural yang dihasilkan. Berdasarkan penelitian yang dilakukan, diperoleh pengaruh peran dari impregnasi asam borat dalam peningkatan dan perolehan maksimal produk furfural. Kehadiran asam borat serta peningkatan suhu pirolisis yang digunakan dapat meningkatkan selektifitas senyawa furfural pada proses pirolisis. Kondisi terbaik produksi furfural didapatkan pada kondisi suhu pirolisis sebesar 500oC dan penggunaan impregnan asam borat dengan rasio boron 0.5, dimana didapatkan perolehan senyawa furfural dengan analisis GC-MS sebesar 44,62% area.

Furfural is one of the valuable compounds that has various industrial uses. Furfural itself can be obtained from lignocellulosic biomass through the conversion of hemicellulose and cellulose structures. In the furfural production process there are problems related to the acquisition of furfural compounds, their effect on the environment and the presence of waste that has not been used optimally. Cellulose itself is one of the wastes generated in the production of furfural from biomass. Cellulose is one of the potential materials that can be converted into furfural through the pyrolysis method. In this research, a review was carried out regarding the catalytic pyrolysis process with the impregnation method on cellulose using boric acid to produce furfural compounds. Impregnation of boric acid on the samples was carried out to increase the recovery of furfural compounds with variations in the elemental boron ratio of 0.1 to 0.5 to cellulose feed with variations in pyrolysis temperature of 450 oC to 550 oC. Fufural compounds are contained in bio-oil products and tested using a gas chromatography and mass spectrum (GC-MS) to determine the content of the resulting furfural compounds. Based on the research conducted, the influence of the role of boric acid impregnation in increasing and maximizing furfural product was obtained. The presence of boric acid and the increased pyrolysis temperature used can increase the selectivity of furfural compounds in the pyrolysis process. The best conditions for furfural production were obtained at a pyrolysis temperature of 500 oC and the use of boric acid impregnant with a boron ratio of 0.5, where the recovery of furfural compounds by GC-MS analysis was 44.62% area."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Angelina Grace
"Pemanfaatan limbah menjadi alat yang bernilai guna sangat penting bagi lingkungan. Limbah tempurung kelapa dapat diolah sebagai sumber karbon untuk kemudian disintesis menjadi bahan aktif untuk aplikasi elektroda superkapasitor. Tujuan dari penelitian ini untuk mengetahui pengaruh kondisi impregnasi logam, suhu pirolisis, dan suhu aktivasi tempurung kelapa terhadap kinerja superkapasitor. Elektroda superkapasitor dirangkai dengan elektrolit berupa KOH 3 M, binder berupa PVA dengan campuran asam sitrat sebagai crosslinking agent, dan separator berupa kertas saring. Hasil penelitian terbaik berdasarkan uji Cyclic Voltammetry diperoleh sampel Ni10-P550-A700. Hal ini menunjukkan bahwa suhu pirolisis (550oC) dan aktivasi tertinggi (700oC) dapat berpengaruh terhadap hasil nilai kapasitansi tertinggi yaitu sebesar 165,75 F/g. Hasil perhitungan energi aktivasi menghasilkan nilai Ea terkecil yaitu 3,88 kJ/mol sehingga menandakan bahwa keberadaan logam dapat berperan sebagai katalis pada proses pirolisis. Karakterisasi BET pada bio-char menunjukkan luas permukaan spesifik sebesar 257,7 m2/g. Sementara itu, hasil karakterisasi SEM memperlihatkan permukaan char dengan persebaran pori yang banyak. Kemudian, hasil karakterisasi dengan Spektrofotometri UV-Vis memberikan hasil bahwa sampel Ni10-P550-A700 memiliki sifat konduktor. Oleh karena itu, seluruh hasil karakterisasi menunjukkan bahwa limbah tempurung kelapa hasil pirolisis dapat berfungsi sebagai penyimpan energi yang baik.

Recycling waste into usable devices is essential for the environment. Coconut shell waste can be processed as a carbon source and synthesized into active ingredients for supercapacitor electrode applications. This study aimed to determine the effect of metal impregnation conditions, pyrolysis temperature, and coconut shell activation temperature on supercapacitor performance. Supercapacitor electrodes are assembled with electrolyte KOH 3 M, binder in the form of PVA with a mixture of citric acid as a crosslinking agent, and separator using filter paper. The Ni10-P550-A700 sample obtained the best research results from the Cyclic Voltammetry test. This result shows that the pyrolysis temperature (550o"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arfi Andika Putra
"ABSTRAK
Tersedianya serabut kelapa di Indonesia dalam jumlah yang besar dapat
dimanfaatkan pada dunia konstruksi, salah satunya adalah batu bata sebagai material bangunan yang dapat di fungsikan secara struktur maupun non struktur. Berdasarkan hal tersebut, dilakukan penelitian mengkaji sifat fisik dan mekanik batu bata tidak dibakar yang dicampur serabut kelapa. Sifat mekanik yang diuji antara lain adalah kuat tekan dan kuat lentur, kemudian sifat fisik yang diuji antara lain adalah susut, absorbsi, densitas, dan kadar air. Campuran bata adalah tanah lempung, pasir, semen, air, dan serabut kelapa. Serabut kelapa yang digunakan berukuran panjang 4 cm dan 2,5 cm, masing-masing panjang memiliki persentase serabut 2%, 4%, dan 6% dari massa semen. Kondisi penyimpanan bata
dengan panjang serabut 4 cm adalah di dalam ruang, sementara bata dengan panjang serabut 2,5 cm adalah di ruang terbuka. Pengunaan serabut kelapa, menunjukan bahwa bata dengan serabut kelapa lebih baik dibandingkan dengan bata tanpa serabut kelapa. Hasil pengujian menunjukan bahwa bata dengan panjang serabut 4 cm secara keseluruhan lebih baik dibandingkan bata dengan panjang serabut 2,5 cm. Persentase serabut kelapa paling optimal adalah 2%, baik pada bata dengan panjang serabut 4 cm maupun 2,5 cm.

ABSTRACT
In Indonesia coconut fibers (coir) are available in large numbers. In the construction world, one kind of building materials that benefit of this situation is brick. The bricks can be used as structural and non structural members. This study was conducted in order to assess the physical and mechanical properties of unfired bricks added by coconut fibers (coir). Mechanical properties were obtained by compressive and flexural test, then their physical properties such are shrinkage, absorption, density, and water content were also observed. Tests performed on a mixture of clay bricks, sand, cement, water, and coconut fibers. Coconut fibers were cut and grouped to length of 4 cm and 2,5 cm. Respectively
those 2 fibers have a percentage of 2%, 4%, and 6% of the cement mass. Storage
conditions of the brick with 4 cm long fibers are in the room, while the brick with
fiber length of 2,5 cm is placed in open space with roof. The use of coconut fibers shows that mechanical behavior of the brick with coconut fibers was better than that of a brick without coconut fibers. The test results also showed that the bricks with 4 cm long fibers in general perform better than a brick reinforced with 2,5 cm fibers. Optimal percentage of coconut fibers addition is 4%, either in bricks reinforced with fibers with a length of 4 cm or 2.5 cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S57959
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1999
S35942
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>