Ditemukan 78430 dokumen yang sesuai dengan query
Pradina Rachmadini
"Proyek ini bertujuan untuk menentukan peringkat tahan api dari dinding baja ringan di bawah kondisi api menggunakan aplikasi kecerdasan buatan. Dua bagian bagian saluran yang diberi lipatan (LCS) dan bagian saluran berongga flange (HFC) grade 500 dan kelas 250 disajikan dalam penelitian ini. LCS adalah jenis konvensional yang digunakan dalam bingkai baja ringan, sementara HFC memperkenalkan memiliki kinerja api yang unggul. Baru-baru ini pemodelan elemen hingga dan uji skala penuh telah digunakan untuk menentukan kinerja api dinding LSF. Meskipun demikian, pemodelan elemen hingga ditemukan memiliki prosedur yang rumit, dan uji skala penuh adalah eksperimen yang memakan waktu. Oleh karena itu, opsi alternatif sebagai pembelajaran mesin diperlukan untuk mengatasi situasi ini. Pendekatan jaringan saraf pembelajaran mesin akan diadopsi untuk melatih data. Masukan akan menjadi data aktual dari FEA dan proyek uji penuh skala sebelumnya. Temperatur dan suhu flensa dan flensa dingin seksi dari suatu bagian diperoleh sebagai input. Kapasitas pengurangan rasio bertindak sebagai output yang akan diprediksi dalam pembelajaran yang diawasi. Pelatihan dan uji coba dilakukan melalui jaringan saraf tiruan dengan menggabungkan parameter yang berbeda seperti fungsi kehilangan, menjaga faktor probabilitas, tingkat pembelajaran, jumlah lapisan, dan neuron. Rasio pengurangan kapasitas yang diperoleh dari pelatihan mesin dapat diplot dan dibandingkan keakuratannya dengan hasil FEA sebelumnya.
This project aims to determine fire resistance rating of Light Gauge Steel Frame (LSF) walls under fire condition using artificial intelligence application. Two section of lipped channel section (LCS) and hollow flange channel section (HFC) grade 500 and grade 250 is presented in this research. LCS is a conventional section used in LSF framing, while HFC introduced having superior fire performance. Recently finite element modelling and a full-scale test have been employed to determine fire performance of LSF walls. Nonetheless, finite element modelling was found to have a complicated procedure, and the full-scale test was a time-consuming experiment. Therefore, an alternative option as machine learning is necessary to overcome this situation. A neural network approach of machine learning will be adopted to train the data. The input would be the actual data from FEA and full-scale test previous project. Hot flange and cold flange temperature and dimension of a section are obtained as the input. Capacity reduction ratio act as an output that will be predicted in supervised learning. Training and testing trialare done through the artificial neural network by combining different parameters such as loss function, keep probability factor, learning rate, the number of layers, and neurons. Capacity reduction ratio attained from machine training can be plotted and compared its accuracy with previous FEA results."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Sardy S.
1992
LP-pdf
UI - Laporan Penelitian Universitas Indonesia Library
Amsterdam: North Holland, 1985
001.535 ART
Buku Teks SO Universitas Indonesia Library
Amanda Kalyana Fasya
"Makalah ini membahas bagaimana persepsi dan adaptasi penggemar SM entertainment terhadap teknologi metaverse perusahaan. Mengingat pengalaman ini, akan bermanfaat untuk memahami strategi yang digunakan perusahaan hiburan dalam menanggapi preferensi konsumen yang berkembang dan teknik mutakhir yang mereka gunakan untuk memfasilitasi keterlibatan penggemar dengan konten pilihan mereka. Dalam hal ini, teknologi Artificial Intelligence (AI) dimasukkan ke dalam komersialisasi idola SM. Inovasi SM Entertainment, seperti konser online dan barang AI, telah membangkitkan minat yang luar biasa dalam komunitas K-Pop. Namun, konsep metaverse ini baru di industri hiburan yang baru masuk perbincangan media arus utama pada 2020). Dengan demikian, cara konsumen memahami dan beradaptasi dengan komersialisasi baru ini berbeda dari pengalaman konsumsi tradisional sebelumnya, yang menawarkan pengalaman yang lebih interaktif, personal, dan dapat diakses oleh konsumen K-pop. Pengetahuan ini memungkinkan kita untuk memahami lebih baik dan menghargai dinamika perubahan industri K-pop dan hubungannya dengan audiensnya. Memanfaatkan Teori Penggunaan dan Gratifikasi, makalah ini berfokus pada motivasi penonton dan kebutuhan untuk mengkonsumsi konser virtual SM Entertainment, dan barang-barang yang tergabung dengan AI menyiratkan konsep metaverse.
This paper discusses how SM entertainment fans’ perception and adaptation to the company’s metaverse technology. Given these experiences, it would be advantageous to understand the strategies that entertainment companies employ in response to developing consumer preferences and the cutting-edge techniques they use to facilitate fan engagement with their preferred content. In this case, Artificial Intelligence (AI) technology was incorporated into SM’s idols' commercialisation. SM Entertainment's innovations, such as online concerts and AI goods, have generated tremendous interest within the K-Pop community. However, the metaverse concept is new to the entertainment industry, which only entered the mainstream media discussion in 2020). Thus, how consumers perceive and adapt to this new commercialisation differs from the previous traditional consuming experience, which offers a more interactive, personalised, and accessible experience for K-pop consumers. This knowledge allows us to understand better and appreciate the changing dynamics of the K-pop industry and its relationship with its audience. Utilising the Uses and Gratification Theory, this paper focuses on audience motivation and needs to consume SM Entertainment’s virtual concert, and the AI-incorporated goods imply the metaverse concept."
Depok: Fakultas Ilmu Sosial dan Ilmu Politik, 2023
MK-pdf
UI - Makalah dan Kertas Kerja Universitas Indonesia Library
Winston, Patrick Henry
Reading: Addison-Wesley, 1993
006.3 WIN a
Buku Teks Universitas Indonesia Library
Andrew, A.M.
[Place of publication not identified]: Abacus Press, 1983
006.3 AND a
Buku Teks Universitas Indonesia Library
Rich, Elaine
New York: McGraw-Hill, 1983
006.3 RIC a
Buku Teks Universitas Indonesia Library
Winston, Patrick Henry
Massachussets: Addison-Wesley Publishing Comp., 1984
006.3 WIN a
Buku Teks Universitas Indonesia Library
Winston, Patrick Henry
Massachussets: Addison-Wesley Publishing Comp., 1977
006.3 WIN a
Buku Teks Universitas Indonesia Library
Rich, Elaine
New York: McGraw-Hill, c1991
006.3 RIC a
Buku Teks Universitas Indonesia Library