Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 31376 dokumen yang sesuai dengan query
cover
Ionia Veritawati
"Saat ini, data dalam bentuk teks semakin berlimpah pada berbagai domain dan media, baik media cetak maupun online. Penambahan kumpulan dokumen teks ini menyebabkan kemudahan akses suatu informasi atau pengetahuan yang ada pada teks semakin berkurang. Selain itu, informasi atau pengetahuan yang ada tersebut semakin sulit untuk diinterpretasi dan dipahami secara menyeluruh. Untuk itu diperlukan suatu cara untuk membantu mempermudah pemahaman suatu data teks. Hal ini dengan melakukan penggalian pengetahuan pada data teks yang melimpah melalui pemrosesan data yang tidak terstruktur (text mining), dengan mengembangkan metode interpretasi berbasis ontologi pada teks untuk memperoleh pengetahuan baru sebagai state of the art.
Dalam penelitian ini, dikembangkan beberapa teknik /metode. Pertama adalah pengembangan teknik preprocessing pada data teks (korpus) serta key phrase extraction menggunakan AST (Annotated Suffix Tree) untuk memperoleh key phrase (frasa kunci) dan frekuensi kemunculan. Kedua adalah pengembangan pemodelan ontologi sebagai basis pengetahuan pada suatu domain berupa relasi antar key phrase menggunakan clustering dan Bayesian Network. Ketiga adalah pengembangan metode sparse clustering pada data sparse, yaitu is-FADDIS (iterative scaling Additive Fuzzy Spectral Clustering) untuk proses pemilahan data teks, yang merupakan pengembangan dari metode clustering FADDIS (Additive Fuzzy Spectral Clustering) serta keempat adalah pengembangan metode matching dan correlating terhadap ontologi, sebagai teknik yang digunakan saat interpretasi teks.
Secara terintegrasi, pembangunan ontologi dari teks, dengan domain berita, dilakukan diawal dengan tahapan ekstraksi key phrase, clustering (is-FADDIS, opsional) dan structure learning untuk membentuk ontologi-tree. Key phrase sebagai konsep, menjadi node pada ontologi tersebut, yang menjadi basis pengetahuan domain. Tahapan berikutnya adalah melakukan interpretasi teks pada suatu teks input yang terdiri dari satu key phrase atau satu cluster menggunakan ontologi tersebut untuk mendapatkan pengetahuan baru. Interpretasi dilakukan dengan ontologi berasal dari teks dengan dua domain dan satu domain. Hasil interpretasi teks menggunakan ontologi berbasis Additive Fuzzy Spectral Clustering (is-FADDIS) ini dievaluasi menggunakan usulanscore relevansi.
Pada teks input dengan satu key phrase sejumlah lima input yang diinterpretasi, hasilnya adalah 40% relevan, 40% kurang relevan dan 20% tidak relevan. Pada teks input satu cluster sejumlah dua input yang diinterpretasi, hasilnya adalah relevan. Nilai score relevansi yang relevan, secara empiris adalah lebih 0,3 dari skala 1, dan score relevansi yang didapat, ada yang mencapai 0,33. Dengan pembandingan hasil interpretasi melalui variasi teknik pada pembangunan ontologi, didapatkan, penggunaan ontologi berbasis is-FADDIS untuk interpretasi teks, relatif pada penelitian ini belum memberikan hasil optimal. Dalam penggunaan teknik-teknik yang dikembangkan, metode ini memberikan keluaran interpretasi teks yang dapat membantu untuk mengolah informasi teks dalam jumlah tidak terlalu besar tetapi cepat.

Currently, the data in the form of text more abundant on various domains and media, both print and online media. The addition of this text document causes the ease of access to any information or knowledge contained in the text is reduced. In addition, the existing information or knowledge is increasingly difficult to interpret and understand comprehensively. For that background, the purpose of the research is to extract knowledge on abundant text data through the processing of unstructured data (text mining), by developing ontology-based interpretation method on text to gain a new knowledge as state of the art.
In this research, some technique/method were developed. The first is the development of preprocessing techniques on text data (corpus) and key phrase extraction using AST (Annotated Suffix Tree) to obtain key phrase and frequency of occurrence. The second is the development of ontology modeling as a knowledge base on a domain in the form of relationships between key phrases using Bayesian Network. The third is the development of sparse clustering method in sparse data, namely is-FADDIS (iterative scaling-Additive Fuzzy Spectral Clustering) for text grouping process, which is the addition of FADDIS clustering method (Additive Fuzzy Spectral Clustering) and the fourth is the development of matching and correlating method as a technique used at interpreting the text entered using ontology.
In an integrated manner, the ontology development of the text, with news domains, is done by processes include key phrase extraction, clustering (is-FADDIS, optional) and structure learning to form ontology-tree. Key phrase as a concept, being the node on the ontology, which becomes the domain knowledge base. The next step is to interpret the text on an input text consisting of a key phrase or a cluster using the ontology to gain new knowledge. Interpretation done with ontology comes from text with two domains and one domain. Text interpretation results using Fuzzy Spectral Clustering (is-FADDIS) based ontology is evaluated using relevancy scores.
In the input text with one key phrase a total of five interpreted inputs, the result is 40% relevant, 40% less relevant and 20% irrelevant. In one-cluster input text a number of two inputs are interpreted, the result is relevant. Relevant relevance score score, empirically more than 0.3 of scale 1, and score relevance obtained, some reaching 0.33. By comparing the results of interpretation through the variation of techniques on ontology development, it was found, the use of FADDIS-based ontology for textual interpretation, relative to this research has not provided optimal results. In the use of developed techniques, this method provides textual interpretation output that can help to process text information in quantities not too large but fastly.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
D2601
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mari Carmen Suarez-Figueroa
"This book, provides the necessary methodological and technological support for the development and use of ontology networks, which ontology developers need in this distributed environment. After an introduction, in its second part the authors describe the NeOn Methodology framework. The book’s third part details the key activities relevant to the ontology engineering life cycle. For each activity, a general introduction, methodological guidelines, and practical examples are provided. The fourth part then presents a detailed overview of the NeOn Toolkit and its plug-ins. Lastly, case studies from the pharmaceutical and the fishery domain round out the work.
"
Berlin: Springer-Verlag, 2012
e20408109
eBooks  Universitas Indonesia Library
cover
Yi Cai
"This book discusses knowledge representation in semantic web. It introduces the relevant background knowledge, models of fuzzy ontologies, importance and priority of properties in concepts, and object typicality in fuzzy ontologies and context-aware ontologies."
Berlin: Springer, 2012
e20408092
eBooks  Universitas Indonesia Library
cover
Orozco, J. Martín Serrano
"This book examines the role ontology engineering can play in providing solutions to the problems of information interoperability and linked data. At the same time as introducing basic concepts of ontology engineering, the book discusses methodological approaches to formal representation of data and information models, thus facilitating information interoperability between heterogeneous, complex and distributed communication systems. In doing so, the text advocates the advantages of using ontology engineering in telecommunications systems. In addition, it offers a wealth of guidance and best-practice techniques for instances in which ontology engineering is applied in cloud services, computer networks and management systems."
New York: [, Springer Science], 2012
e20418223
eBooks  Universitas Indonesia Library
cover
Liana Stanescu, editor
"Creating new medical ontologies for image annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system, cross media relevance models. Based on a text query the system will retrieve the images that contain objects described by the keywords."
New York: [, Springer], 2012
e20418292
eBooks  Universitas Indonesia Library
cover
Faisal Yusuf
"Penelitian ini bertujuan untuk mengembangkan sistem temu-kembali informasi dengan melakukan perluasan terhadap sistem temu kembali informasi berbasis jaringan inferensi dengan menerapkan metode clustering. Metode Clustering yang digunakan dalam penelitian ini merupakan hasil penelitian Magdalena [MAG96]. Uji coba dilakukan pada kumpulan dokumen koleksi Fakultas Ilmu Komputer Universitas Indonesia. Pemilihan nilai ambang dari cluster yang digunakan dalammpembentukan jaringan inferensi mempengaruhi dokumen yang terambil dari kueri yang diberikan terhadap sistem yang diuji.
Hasil uji coba menunjukkan bahwa perluasan sistem temu kembali informasi jaringan inferensi model dasar dengan metode clustering mempengaruhi jumlah dokumen yang terambil (retrieved). Nilai ambang clustering berbanding terbalik dengan jumlah dokumen terambil untuk sistem temu kembali jaringan inferensi dengan additional evidence yang menerapkan metode clustering. Semakin tinggi nilai ambang maka jumlah dokumen terambil semakin berkurang."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2001
S1507
UI - Skripsi Open  Universitas Indonesia Library
cover
Wisnu Linggakusuma Wardhana
"Tersedianya sumber informasi yang tidak terbatas pada saat ini, menjadikan perolehan informasi melibatkan banyak sumber informasi. Hal-hal tersebut memicu penelitian mengenai metode peringkasan dokumen yang semula ditujukan untuk membuat sebuah ringkasan dari sebuah dokumen menjadi metode peringkasan yang ditujukan untuk menghasilkan ringkasan dari banyak dokumen. Peringkasan multi-dokumen merupakan suatu metode yang ditujukan untuk menyampaikan informasi-informasi utama dari banyak dokumen dalam ringkasan. Penelitian yang dilakukan oleh penulis ini merupakan penelitian dengan topik peringkasan multi-dokumen untuk dokumen berbahasa Indonesia. Pada penelitian ini, penulis menggunakan dua buah teknik peringkasan multi-dokumen yaitu centroidbased summarization dan k-means-based summarization. Pada penelitian ini penulis mencoba untuk mengaplikasikan kedua teknik tersebut untuk membuat ringkasan dari dokumen berbahasa Indonesia.
Untuk mengukur kualitas ringkasan yang dihasilkan oleh kedua teknik tersebut, penulis membuat ringkasan referensi untuk masing-masing sumber dokumen yang dibuat secara manual sebagai perbandingan. Hasilnya adalah pada teknik centroidbased summarization, kualitas ringkasan yang dihasilkan akan semakin bagus jika kelompok dokumen yang digunakan sebagai masukan berisi dokumen-dokumen yang relevan terhadap topik. Sedangkan pada teknik k-means-based summarization, kualitas ringkasan yang dihasilkan akan semakin bagus jika kelompok dokumen yang digunakan sebagai masukan merupakan kelompok dokumen yang besar (lebih banyak mengandung dokumen/kalimat). Evaluasi terhadap kualitas ringkasan juga dilakukan dengan menggunakan juri/penilai manusia. Hasilnya adalah pada teknik centroid-based summarization, para juri menilai ringkasan yang dihasilkan sudah bagus. Pada teknik k-means-based summarization dengan 10% compression rate, para juri menilai bahwa ringkasan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Hasibuan, Zainal Arifin
"Pada tulisan ini akan dijelaskan berbagai teknik sistem temu kembali informasi dan rancangan integrasi sistem ke basis hiperteks. Sistem pengindeksan yang dijelaskan adalah pengindeksan dengan pembobotan berdasarkana frekuensi dan berdasarkan rumus Savoy [1]. sedangkan teknik temu kembali informasi yang dijelaskan adalah teknik Boolean biasa, teknol Boolean berperingkat dan teknik Extnded Boolean.Kinerja berbagai pengindeksan di ukur dengan menampilkan dokumen yang terambil berikut bobot peringkatnya.
Sistem ini dapat digunakan sebagai "bencmarking tool" untuk mengukur kinerja berbagai teknik yang digunakan dalam sistem temu kembali informasi"
2001
JIKT-1-2-Okt2001-44
Artikel Jurnal  Universitas Indonesia Library
cover
"Ekstraksi informasi merupakan sebuah tahap awal dari proses analisis data tekstual. Ekstraksi informasi diperlukan untuk mendapatkan informasi dari data tekstual sehingga dapat digunakan untuk proses analisis seperti misalnya klasifikasi dan kategorisasi. Data tekstual
sangat dipengaruhi oleh bahasa, jika sebuah data tekstual berbahasa Arab maka karakter yang digunakan adalah karakter arab.
Knowledge dictionary merupakan sebuah kamus yang dapat digunakan untuk mengekstraksi informasi dari data tekstual. Informasi yang diekstraksi menggunakan knowledge dictionary adalah konsep.
Knowledge dictionary biasanya dibangun secara manual oleh seorang pakar yang tentunya membutuhkan waktu yang lama dan spesifik untuk
setiap masalah. Pada penelitian ini diusulkan sebuah metode untuk membangun knowledge dictionary secara otomatis. Pembentukan
knowledge dictionary dilakukan dengan cara mengelompokkan kalimat yang memiliki konsep yang sama, dengan asumsi kalimat yang memiliki konsep yang sama akan memiliki nilai simi laritas yang tinggi. Konsep yang telah diekstraksi dapat digunakan sebagai fitur untuk proses komputasi berikutnya misalnya klasifikasi ataupun kategorisasi.
Dataset yang digunakan dalam penelitian ini adalah dataset teks Arab. Hasil ekstraksi diuji dengan menggunakan mesin klasifikasi
decision tree dan didapatkan nilai presisi tertinggi 71,0% dan nilai recall tertinggi 75,0%.

Abstract
Information extraction is an early stage of a process of textual data analysis. Information extraction is required to get information from textual data that can be used for process analysis, such as classification and categorization. A textual data is strongly influenced by the language. Arabic is gaining a significant attention in
many studies because Arabic language is very different from others, and in contrast to other languages, tools and research on the Arabic language is still lacking. The information extracted using the knowledge
dictionary is a concept of expression. A knowledge dictionary is usually constructed manually by an expert and this would take a long time and is specific to a problem only. This paper proposed a method for automatically building a knowledge dictionary. Dictionary knowledge is formed by classifying sentences having the same concept, assuming that they will have a high similarity value. The concept that has been extracted can be used as features for subsequent computational process such as classification or categorization. Dataset used in this paper was the Arabic text dataset. Extraction result was tested by using a decision tree classification engine and the highest precision value obtained was 71.0% while the highest recall value was 75.0%. "
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Informasi], 2012
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Carles Octavianus
"Peningkatan jumlah data teks digital membuat manusia membutuhkan mekanisme untuk mengembalikan teks yang efektif dan efisien. Salah satu mekanisme untuk mengembalikan teks adalah dengan pemeringkatan teks. Tujuan dari pemeringkatan teks adalah menghasilkan daftar teks yang terurut berdasarkan relevansinya dalam menanggapi permintaan kueri pengguna. Pada penelitian ini, penulis menggunakan Bidirectional Encoder Representations from Transformers (BERT) untuk membangun model pemeringkatan teks berbahasa Indonesia. Terdapat 2 cara penggunaan BERT untuk pemeringkatan teks, yaitu BERT untuk klasifikasi relevansi dan BERT untuk menghasilkan representasi vektor dari teks. Pada penelitian ini, 2 cara penggunaan BERT tersebut terbagi menjadi 4 model, yaitu BERTCAT, BERTDOT, BERTDOTHardnegs, BERTDOTKD. Penggunaan BERT memberikan peningkatan kualitas pemeringkatan teks bila dibandingkan dengan model baseline BM25. Peningkatan kualitas pemeringkatan teks tersebut dapat dilihat dari nilai metrik recriprocal rank (RR), recall (R), dan normalized discounted cumulative gain (nDCG).

The increase in the amount of digital text data has led humans to require mechanisms for effectively and efficiently retrieving text. One mechanism for text retrieval is text ranking. The goal of text ranking is to generate a list of texts sorted based on their relevance in response to user query requests. In this study, the author uses Bidirectional Encoder Representations from Transformers (BERT) to build a text ranking model for the Indonesian language. There are 2 ways to use BERT for text ranking, namely BERT for relevance classification and BERT for generating vector representations of text. In this study, these 2 ways of using BERT are divided into 4 models, namely BERTCAT, BERTDOT, BERTDOTHardnegs, BERTDOTKD. The use of BERT improves the quality of text ranking compared to the baseline BM25 model. The improvement in the quality of text ranking can be seen from the values of the reciprocal rank (RR), recall (R), and normalized discounted cumulative gain (nDCG) metrics."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>