Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133560 dokumen yang sesuai dengan query
cover
Adi Mulyadi
"ABSTRAK
Nama : Adi MulyadiProgram studi : Magister ManajemenJudul : Analisis Segmentasi Konsumen Pada Perusahaan Real Estate Menggunakan Big Data Analytics Studi pada PT. ISPI Pratama LestariPembimbing : Arga Hananto, M.Bus. Studi tentang segmentasi konsumen dipengaruhi oleh kebutuhan perusahaan untuk bersaing dengan kompetitornya dan menciptakan keunggulan kompetitif bagi perusahaannya. Segmentasi produk merupakan salah satu hal utama dalam dunia bisnis, karena kesalahpahaman dalam segmentasi konsumen dapat mengakibatkan berkurangnya pendapatan. Real estate merupakan industri senilai milyaran dolar yang sangat tersegmentasi, dikarenakan karakteristik konsumennya yang beragam. Indonesia merupakan pasar yang potensial dan bertumbuh bagi industri real estate dan perumahan, karena Indonesia memiliki jumlah penduduk yang besar sekitar 260 juta jiwa dan memiliki area geografis yang luas. Untuk menganalisa data dengan jumlah besar tersebut, perusahaan real estate menggunakan Big Data Analytics, sebagai alat untuk mendapatkan masukan yang berarti dari data tersebut. Big Data mulai banyak digunakan sebagai alat untuk mempelajari tentang kondisi atau untuk memprediksi perilaku yang mungkin terjadi melalui berbagai pemodelan analisis data. Penelitian ini menyajikan analisis segmentasi untuk membantu perusahaan pengembang real estate dalam memahami segmentasi konsumen mereka, dengan menggunakan data transaksi penjualan perusahaan periode 2013 - 2017. Analisis segmentasi dalam penelitian ini telah dikembangkan menggunakan cluster analysis, dengan menggunakan metode hierarchical clustering, Elbow Method, dan K-Means. Hasil dari cluster analysis menunjukkan bahwa terdapat 4 segmen konsumen, yang memiliki karakteristik demografis dan preferensi produk yang berbeda. Selain itu, penelitian ini juga melakukan analisis tabulasi silang untuk mengetahui hubungan antar variabel. Selanjutnya dilakukan analisis diskriminan, dari situ diketahui bahwa gaji dan harga jual merupakan 2 variabel yang secara signifikan memberikan pengaruh paling besar terhadap penentuan cluster membership. Setelah mengetahui karakteristik dan melakukan analisa, dapat diusulkan bentuk promosi yang sesuai bagi masing ndash; masing segmen.Kata kunci:Segmentasi konsumen, real estate, big data, cluster analysis, tabulasi silang

ABSTRACT
ABSTRACT Name Adi MulyadiStudy Program Magister of ManagementTitle Customer Segmentation Analysis In Real Estate Using Big Data Analytics A Study In PT. ISPI Pratama LestariCounsellor Arga Hananto, M.Bus. The study of consumer segmentation is influenced by a company 39 s need to compete with its competitors and create a competitive advantage. Product segmentation is one of the main things in the business world, because misunderstanding in consumer segmentation can lead to reduced revenue. Real estate is a multi billion dollar industry that is highly segmented, due to the diverse characteristics of its customers. Indonesia is a potential and growing market for the real estate and housing industries, as Indonesia has a large population around 260 million people and has a large geographical area. To analyze such big amounts of data, real estate companies use Big Data Analytics, as a means to gain meaningful insight from the data. Big Data is widely used as a tool to learn about conditions or to predict behaviors that may occur through various data analysis models. This study presents segmentation analysis to help real estate developers to understand their customer segmentation using company sales transaction data from 2013 to 2017 period. Segmentation analysis in this research has been developed using cluster analysis, with hierarchical clustering, Elbow Method, and K Means. The results of cluster analysis show that there are 4 segments of consumers, which have different demographic characteristics and product preferences. In addition, this study also conducted cross tabulation analysis to determine the relationship between variables. Then from discriminant analysis, it is known that salary and selling price are 2 variables that significantly give the most influence on cluster membership determination. After knowing the characteristics and perform the analysis, it can be proposed the appropriate form of promotion for each segment. Key words Customer segmentation, real estate, big data, cluster analysis, cross tabulation"
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T50418
UI - Tesis Membership  Universitas Indonesia Library
cover
Syarifah Fatimah Fitria
"ABSTRAK
Penelitian ini menjelaskan mengenai penerapan segmentasi konsumen berdasarkan CLV agar dapat menghasilkan profil konsumen bagi perusahan untuk memberikan perlakuan yang tepat bagi masing ndash; masing konsumen. Dalam memproses data yang akan digunakan, penelitian ini mengunakan segmentasi RFM sebagai langkah awal untuk mengidentifiksi data dan dilanjutkan dengan klasterisasi menggunakan K-Means agar mendapatkan gambaran data konsumen yang lebih jelas. Hasil dari penelitian ini menunjukan adanya lima jenis profile konsumen yang berbeda berdasarkan perhitungan RFM dan K-Means. Setiap kelompok memiliki karakteristik yang berbeda yang dapat digunakan oleh perusahaan untuk membentuk strategi dalam memberikan pendekatan kepada konsumen. Terdapat juga perbandingan antara kelompok konsumen yang akan dihasilkan apabila perusahaan menggunakan segmentasi konsumen menggunakan CLV dengan saat tidak menggunakan CLV. Dengan memberikan perlakuan yang tepat bagi konsumen yang dapat memberikan keuntungan bagi perusahaan dimasa yang akan datang, maka perusahaan dapat membentuk strategi yang lebih efektif dan tepat sasaran.

ABSTRACT
This research focus on how to make a consumer segmentation based on CLV in order to create a customer profile for the company to provide appropriate treatment for each consumer. In order to process the data, this research uses RFM segmentation as the first step to identify the data and continued with K Means clustering to get a better interpretation of consumer data. The results of this research show five different types of consumer profiles based on RFM and K Means calculations. Each cluster has a different characteristic that can be used for a company to define a better strategy in order to approach their customer. There is also a comparison between the consumer groups if the company uses consumer segmentation using CLV or when not using CLV. By providing the right treatment for profitable customer, the company can form an effective and targeted strategy in the future. "
Depok: Fakultas Eknonomi dan Bisnis Universitas Indonesia, 2018
T50420
UI - Tesis Membership  Universitas Indonesia Library
cover
Meita Pusparini
"Penelitian ini bertujuan untuk mengidentifikasi segmentasi RFM pada toko kosmetik online di Indonesia. Penelitian ini menggunakan analisis RFM (Recency, Frequency, dan Monetary) yang dilanjutkan dengan K-Means Clustering dengan menggunakan Hiearchical Clustering untuk mencari nilai k. Penelitian ini menggunakan data transaksi penjualan Makeupuccino sepanjang tahun 2017 untuk segmentasi RFM. Hasilnya menunjukkan bahwa jumlah segmentasi yang paling tepat untuk toko kosmetik online adalah 4, yang dibagi menjadi Platinum, Gold, Iron, dan Lead. Keempat segmentasi tersebut memiliki marketing objective dan program marketing yang berbeda.

This research aims to identify RFM segmentation on makeup online store in Indonesia. This research uses RFM (Recency, Frequency, and Monetary) analysis and then uses K-Means Clustering with Hierarchical Clustering as the way to finds k values. This study uses transaction on Makeupuccino (one of makeup online store in Indonesia) during 2017 to get RFM segmentation. The result shows that the best RFM segmentation for makeup online store in Indonesia is 4, that divided into Platinum, Gold, Iron, and Lead. Each of segmentation has different marketing objective and marketing program.
"
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nico Juanto
"E-commerce dan big data merupakan bukti dari kemajuan teknologi yang sangat pesat. Big data berperan cukup penting dalam perusahaan e-commerce untuk menangani perkembangan semua data, mengolah setiap data tersebut dan menjadi competitive advantage bagi perusahaan. Perusahaan XYZ.com mengalami kesulitan dalam menganalisis stok dan tren dari produk yang dijual. Jika hal ini tidak ditanggulangi, maka perusahaan XYZ.com akan kehilangan opportunity gain. Untuk menentukan tren dan stok produk secara cepat dengan akurat, dibutuhkan big data predictive analysis. Penelitian ini mengolah data transaksi menjadi data yang dapat dianalisis untuk menentukan tren dan prediksi tren produk berdasarkan kategorinya dengan menggunakan big data predictive analysis. Hasil dari penelitian ini akan memberikan informasi kepada pihak manajemen kategori apa yang berpotensi menjadi tren dan jumlah minimal stok yang harus disediakan dari kategori produk tersebut.

E commerce and big data are evidence of rapid technological advances. Big data plays an important role in e commerce companies to handle and analyze all data changes, and become a competitive advantage for the company. XYZ.com experience a difficulty in analyzing stocks and commerce product trend. If this issue not addressed, XYZ.com company will lose an opportunity gain. To determine trends and stock accurately, XYZ.com can use big data predictive analysis. This study processes transaction data into data that can be analyzed to determine trends and predictions of product trends based on its categories using big data predictive analysis. The results of this study give massive informations to management about what categories will potential become trends and minimum stock required to be provided."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kelvin Hendiko Sutedjo
"Tujuan dari penelitian ini adalah memberikan solusi dan masukkan kepada XYZ.com untuk mengembangkan layanan video on demand dengan mengevaluasi data yang diperoleh melalui web analytics. Melalui data tersebut XYZ dapat memperdalam pengetahuan mengenai perilaku pengunjung, terutama pengunjung yang memiliki value berupa durasi kunjungan yang tinggi sehingga dimasa mendatang XYZ.com dapat merumuskan strategi untuk meningkatkan dan mempertahankan hubungan yang nantinya diharapkan dapat meningkatkan advertising revenue. Penelitian ini menggunakan big data analytics, yakni analisis deskriptif. Teknik analisa data yang digunakan adalah analisa clustering dan data analysis menggunakan SQL. Clustering analysis digunakan untuk mengelompokkan pengunjung berdasarkan durasi kunjungan dan jumlah perangkat. Data analysis dengan SQL digunakan untuk menganalisa karakteristik dari pola penggunaan perangkat dan traffic source, serta dapat membantu memvisualisasikan data. Hasil akhir dari penelitian yang dilakukan adalah mengetahui jumlah cluster dari pengunjung yang terbentuk, pola penggunaan perangkat dan traffic source yang digunakan pada visitor yang memiliki durasi kunjungan yang tinggi.

The purpose of this research is to provide solution and recommendation for XYZ.com in order to develop and enhance their video on demand service by evaluating the data extracted from web analytics. Through these data, XYZ can deepen the knowledge about the behavior of visitors, especially visitors who have value of high duration of visits, so that in future XYZ.com can formulate strategies to improve and maintain relationship that will be expected to increase advertising revenue. This study use big data analytics, namely descriptive analysis. Data analysis technique used are clustering analysis and data analysis using SQL. Clustering analysis is used to group visitors based on the duration of the visit and the number of devices. Data analysis with SQL is used to analyze characteristics of device usage patterns and traffic sources, and can help visualize data. The final result of this research is to know the number of clusters of visitors formed, the pattern of device usage and traffic source used in visitors who have high duration of visit."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohamad Abdul Kadir
"

Penelitian ini bertujuan untuk mengidentifikasi perilaku belanja konsumen, menentukan segmentasi konsumen dan mengidentifikasi konsumen berdasarkan wilayah konsumen Bukku.id. Penelitian ini menggunakan data transaksi pada periode 1 September 2017 hingga 17 September 2018. Data diolah dengan analisis Recency, Frequency, Monetary (RFM) dan clustering untuk membentuk segmentasi konsumen. Selanjutnya, analisis pareto diberlakukan dalam menentukan penerbit dan penulis yang layak diprioritaskan untuk memaksimalkan hasil/return dengan meminimalkan usaha/effort. Pemetaan terhadap lokasi konsumen untuk pareto penulis ditentukan agar memberikan pemahaman untuk perbaikan promosi dan strategi pemasaran offline.

Hasil dari penelitian ini menunjukkan adanya tiga jenis profil konsumen yang berbeda berdasarkan analisis RFM dan clustering. Profil konsumen yang dipetakan terhadap penerbit dan penulis akan memberikan perusahaan keuntungan dalam memprioritisasi usaha dalam mengembangkan pola treatment terhadap penerbit dan penulis. Pengembangan offline marketing juga dapat dibangun karena mengetahui analisis lokasi konsumen yang ada.


The purpose of this research is to identify customer purchase behavior, form customer segmentation, and identify customer address of Bukku.id. this research uses customer purchase data of Bukku.co.id in the period 1 September 2017 – 17 September 2018. RFM method and clustering are used to identify customer segmentation. Then, pareto analysis results which publishers and authors need to be concerned for prioritizing effort in order to gain maximum benefit. Customer address or location has been mapped based on priority authors to determine promotion and offline marketing strategy.

The results of this research show three customer cluster based on RFM and clustering analysis. Each cluster has different characteristic and it can determine which strategy suit to approach their customers. Customer profile based on authors and publisher could also benefit the company to prioritize any treatments relate to them. Better offline marketing strategy can be developed by knowing location analysis

"
2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aswin Marfan Pratama
"Studi tentang pengelolaan customer retention bersumber dari kebutuhan perusahaan untuk mempertahankan customer agar tetap loyal menggunakan produk ataupun layanan yang ditawarkan. Hingga saat ini customer retention menjadi salah satu perhatian utama dalam dunia bisnis karena menurunnya tingkat customer retention berdampak pada berkurangnya revenue. Big data mulai banyak dimanfaatkan sebagai sumber data untuk memahami suatu kondisi ataupun untuk memprediksi suatu behavior yang akan terjadi melalui berbagai pemodelan analisis data. Peristiwa berhentinya customer dari menggunakan produk ataupun layanan disebut customer churn.
Penelitian ini menyajikan dua model untuk membantu suatu perusahaan jasa penyedia layanan online berbasis internet untuk menganalisis dan memprediksi future behavior berupa customer churn dan memahami kondisi yang menyebabkannya. Model prediksi customer churn yang dikembangkan menggunakan konsep logistic regression dan random forest.
Hasil dari penelitian ini menunjukkan bahwa model yang dikembangkan bisa mengidentifikasi customer suatu perusahaan penyedia layanan online QWE.Inc yang berpotensi akan meninggalkan layanan. Selain itu penelitian ini juga menganalisis faktor-faktor yang memiliki pengaruh signifikan terhadap kondisi tersebut dan memberikan saran pengelolaan customer retention dengan program customer relationship management.

The study of customer retention management is influenced by the need of the companies to keep their customers stay loyal to use their products or services. Customer retention is one of the main concerns in the business world until today, since the declining level of customer retention will result in the reduced revenue. Big data begin to be widely used as source of data to learn about condition or to predict behavior that may occur through various data analysis modeling. The event of the customer stop from using the product or service is called customer churn.
This study presents two models to help QWE Inc. an internet based online service provider company, to analyze and predict future behavior which is customer churn and understand the causes. Customer churn prediction models in this study have been developed using logistic regression and random forest concepts.
The results of this study indicate that the developed model can identify the customer of QWE.Inc that will potentially leave the service. In addition, this study also analyzed the factors that have a significant influence on these conditions and provide advice on customer retention management with customer relationship management programs.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Cindy Hosea
"E-commerce merupakan online platform yang sedang mengalami pertumbuhan pesat dan memberikan kontribusi terhadap perekonomian internet di Indonesia selama lima tahun terakhir. E-commerce menghasilkan ulasan konsumen yang merupakan sumber informasi bagi para pemangku kepentingan. Penelitian ini melakukan analisis big data terhadap 132.085 ulasan konsumen online mengenai ponsel Xiaomi yang ditulis pada tiga situs e-commerce terbesar di Indonesia: Shopee, Bukalapak, dan Blibli dengan text mining, untuk mengidentifikasi distribusi topik, menganalisis jaringan asosiasi semantik, menemukan perbedaan pada ketiga situs, dan menganalisis hubungan antara topik dan skor penilaian ulasan. Hasil penelitian menunjukkan bahwa logistik merupakan topik yang paling banyak didiskusikan pada ketiga situs, sementara kualitas pelayanan lebih banyak didiskusikan pada Consumer-to-Consumer (C2C) daripada Business-to-Consumer (B2C) e-commerce. Atribut ponsel lebih banyak didiskusikan pada Bukalapak dan Blibli, dengan fokus topik sistem dan CPU & perangkat keras. Jaringan ulasan konsumen Bukalapak membentuk scale-free network, sementara jaringan kedua situs lainnya hanya menunjukkan karakteristik dari small-world network. Hasil regresi logistik ordinal menunjukkan bahwa 5 dari 8 topik yang dibahas dalam komentar ulasan memiliki hubungan negatif dengan skor penilaian, serta ulasan bernilai rendah cenderung memiliki komentar yang lebih panjang dan spesifik. Hasil penelitian dapat bermanfaat sebagai wawasan untuk pengembangan bagi para pemangku kepentingan di industri e-commerce.

E-commerce is a rapidly growing online platform that contributes to Indonesias internet economy during the past five years. E-commerce generates customer reviews as a source of information for stakeholders. This study applies big data analytics toward 132,085 online reviews about Xiaomi mobile phones posted on three major e-commerce websites in Indonesia: Shopee, Bukalapak, and Blibli by text mining, in identifying their distribution of topics, analyzing semantic association network, determining differences between the three websites, also analyzing the relationship between topics and rating score. The findings show that logistics is the most highly discussed topic, while service quality is discussed more in Consumer-to-Consumer (C2C) rather Business-to-Consumer (B2C) e-commerce. Phone attributes are discussed more in Bukalapak and Blibli, focusing on system and CPU & hardware topics. The network of Bukalapaks customer reviews form a scale-free network, and the other two only have the characteristics of a small-world network. The overall results from multilinear regression and ordinal logistic regression show that 5 out of 8 topics reviewed have negative relationships with rating scores, and low-rated reviews tend to have longer and more specific review comments. The findings provide insights for e-commerce stakeholders in supporting further development."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"This book provides users with cutting edge methods and technologies in the area of big data and visual analytics, as well as an insight to the big data and data analytics research conducted by world-renowned researchers in this field. The authors present comprehensive educational resources on big data and visual analytics covering state-of-the art techniques on data analytics, data and information visualization, and visual analytics. Each chapter covers specific topics related to big data and data analytics as virtual data machine, security of big data, big data applications, high performance computing cluster, and big data implementation techniques. Every chapter includes a description of an unique contribution to the area of big data and visual analytics. This book is a valuable resource for researchers and professionals working in the area of big data, data analytics, and information visualization. Advanced-level students studying computer science will also find this book helpful as a secondary textbook or reference."
Cham, Switzerland: Springer, 2017
005.7 BIG
Buku Teks  Universitas Indonesia Library
cover
Andri Apriyana SA
"ABSTRAK
Sebagai proses alamiah dalam mencapai titik ekuilibrium, perkembangan ekonomi digital akan selalu diikuti oleh peningkatan risiko keamanan cyber. Penelitian ini membahas analisis big data percakapan media sosial Twitter dengan tipe data yang tidak terstruktur untuk memprediksi risiko cyber berupa keberhasilan serangan exploit terhadap kerentanan sistem informasi yang dipublikasikan pada situs kerentanan global cvedetails.com common vulnerabilities and exposures CVE . Penelitian ini mengeksplorasi aspek kualitatif dan kuantitatif atas data yang bersumber dari twitter dan CVE menggunakan metode pemodelan algoritmik statistical machine learning. Prediksi dilakukan dengan membandingkan beberapa model klasifikasi yang dipilih dari sepuluh algoritma yang paling banyak digunakan dalam data mining berdasarkan survey yang dilakukan oleh IEEE pada International Conference on Data Mining tahun 2006. Hasil prediksi terbaik dihasilkan melalui model algoritma Artificial Neural Networks dengan tingkat akurasi 96,73 . Model prediksi dapat dimanfaatkan oleh perusahaan asuransi dengan produk perlindungan risiko cyber untuk mengurangi potensi penyebaran klaim terjadinya risiko. Model juga dapat dimanfaatkan oleh perusahaan umum untuk melakukan mitigasi risiko cyber secara efektif dan efisien dengan menghindari situasi false-negatives error dalam pengelolaan risiko.

ABSTRACT
As a natural process in achieving equilibrium state, digital economic progress will always be followed by the increase of cyber security risk exposure. This research is focusing on unstructured Twitter social media big data analytics to predict cyber risks event in terms of successful attack on exploit based software vulnerability published in global vulnerability information websites cvedetails.com common vulnerabilities and exposures CVE . This research explores qualitative and quantitative aspect of data extracted from Twitter and CVE using statistical machine learning algorithmic modeling method. Prediction result obtained by comparing and selecting classification model from several statistical machine learning algorithm based on top ten algorithms in data mining survey produced by IEEE in 2006 International Conference on Data Mining. The best prediction results provided through Artificial Neural Networks algorithm with 96,73 accuracy rate. This prediction model offers advantages for insurance company with cyber liability product by reducing claim spread probability over cyber risk loss event. Prediction model can also be beneficial for company in general by providing an effective and efficient way to mitigate cyber risks through false negatives error avoidance in risk management."
2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>