Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 179953 dokumen yang sesuai dengan query
cover
Adhicahyo Prabowo
"Tesis ini membahas tentang aplikasi Cryogenic Power Generation pada Terminal Regasifikasi LNG di Indonesia. Cryogenic Power Generation atau biasa disebut Cryopower adalah pembangkitan tenaga listrik dengan memanfaatkan energi dingin yang salah satunya dihasilkan pada Terminal Regasifikasi LNG. Pemanfaatan tersebut sudah diterapkan di beberapa negara dunia terutama di negara Jepang namun di Indonesia belum diterapkan. Tujuan dari tesis ini adalah untuk melakukan analisa secara teknis dan ekonomis terhadap siklus Cryopower yang optimal untuk diaplikasikan di Indonesia. Hasil dari penelitian ini, diharapkan bisa menjadi pertimbangan / masukan bagi pihak yang ingin melakukan investasi sebuah terminal regasifikasi untuk menambah siklus Cryogenic Power Generation yang paling optimal pada terminal regasifikasinya.
Analisis teknis dilakukan dengan simulasi siklus Cryopower yang sudah diaplikasikan secara komersial yaitu siklus kombinasi dengan fluida kerja Propana dan Etana dengan menggunakan perangkat lunak UNISIM sehingga didapatkan data kapasitas komponen utama dan nilai efisiensi siklus. Selanjutnya, analisis ekonomis dilakukan dengan melakukan estimasi CAPEX dengan menggunakan bantuan perangkat lunak. Nilai CAPEX tersebut dimasukkan ke dalam parameter - parameter keekonomian yaitu laporan arus kas, payback period, NPV, IRR, dan BC Ratio. Pemilihan siklus dilakukan dengan mencari nilai akhir siklus dengan metode skoring. Dimana ditentukan bobot teknis berbanding ekonomis adalah 50 berbanding 50 . Siklus yang dipilih adalah siklus yang memiliki nilai akhir tertinggi. Siklus dengan nilai akhir tertinggi adalah siklus kombinasi dengan fluida kerja Propana.

This thesis discusses the application of Cryogenic Power Generation at LNG Regasification Terminal in Indonesia. Cryogenic Power Generation or commonly called Cryopower is power generation by utilizing cold energy which one of them is produced at LNG Regasification Terminal. Utilization has been applied in some countries of the world, especially in Japan but in Indonesia has not been applied. The purpose of this thesis is to analyze technically and economically on optimum Cryopower cycle to be applied in Indonesia. The results of this study, is expected to be a consideration for those who want to invest a regasification terminal to add the most optimal Cryogenic Power Generation cycle at its regasification terminal.
Technical analysis is done by simulation of commercially applied Cryopower cycle which is combination cycle with propane and ethane working fluid by using UNISIM software so that the main component capacity data and cycle efficiency value are obtained. Furthermore, an economic analysis is performed by estimating CAPEX using software assistance. The CAPEX values are inputed in the economic parameters of cash flow, payback period, NPV, IRR, and BC Ratio. Selection cycle is done by finding the final value of the cycle by the scoring method. Where determined technical weight is economically proportional to 50 to 50 . The selected cycle is the cycle that has the highest end value. The cycle with the highest end value is the combined cycle with the Propane working fluid.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50809
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochammad Qardhawi Wicaksono
"Liquified Natural Gas (LNG) merupakan salah satu sumber energi yang menjanjikan dalam upaya transisi menuju energi terbarukan. Namun, terdapat kekurangan pada proses regasifikasi LNG yang disebabkan adanya pemborosan energi dingin yang tidak dimanfaatkan selama proses tersebut berlangsung. Teknologi pembangkit listrik termal memiliki potensi dalam memanfaatkan energi dingin tersebut. Penelitian ini bertujuan untuk mengevaluasi konfigurasi sistem pembangkit daya berupa siklus Brayton terbuka dan Rankine organik yang terintegrasi dengan sistem regasifikasi LNG, menggunakan beberapa varian fluida kerja organik seperti ammonia, propana, dan butana. Penelitian ini meninjau sisi termodinamika dan keekonomian melalui simulasi dan optimasi menggunakan perangkat lunak Aspen HYSYS 12. Analisis ekonomi dilakukan melalui perhitungan total biaya produksi yang melibatkan luas heat exchanger yang dibutuhkan dan analisis sensitivitas terhadap jumlah energi listrik yang dihasilkan. Hasil yang didapatkan menunjukkan penggunaan fluida kerja ammonia memiliki tingkat efisiensi termal dan kapasitas daya tertinggi yaitu 40,4% dan 103,7 MW apabila dibandingkan dengan penggunaan fluida kerja lainnya. Case dengan fluida kerja ammonia memiliki nilai NPV tertinggi yaitu 307,7 trilliun rupiah.

Liquified Natural Gas (LNG) is a promising energy source in the transition to renewable energy. However, there are drawback in the LNG regasification process due to the waste of cold energy that is not utilized during the process. Thermal electricity generation technology has the potential to utilize this cold energy. This research aims to evaluate the power generation system configuration in the form of an open Brayton and organic Rankine cycle integrated with an LNG regasification system, using several variants of organic working fluids such as ammonia, propane and butane. Comparisons will also be carried out to see opportunities from implementing this integrated cycle. This research will review the thermodynamics and economics through simulation and optimization using Aspen HYSYS 12 software. Economic analysis is carried out through calculating total production costs involving the required heat exchange area and sensitivity analysis of the amount and price of electricity produced. The results of the economic analysis will provide a comprehensive comparison of the three working fluids used. The results indicate that using ammonia as a working fluid achieves the highest thermal efficiency and power capacity, at 40.4% and 103.7 MW respectively, compared to other working fluids."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Handayani Lulun Lande
"Perencanaan dan pengadaan fasilitas pembangkit listrik berikut fasilitas terminal LNG masih dilakukan terpisah. Dari sudut pandang teori, integrasi sistem pembangkit listrik dengan sistem regasifikasi pada terminal LNG masih belum optimal karena masih terdapat potensi pemanfaatan energi terbuang baik energi panas maupun energi dingin yang merupakan peluang perbaikan untuk meningkatkan efisiensi sistem keseluruhan. Integrasi sistem dapat dilakukan dengan memanfaatkan energi panas pada air pendingin mesin dan pada gas buang dari proses pembangkitan energi listrik, sekaligus memanfaatkan energi dingin dari proses regasifikasi LNG untuk mendinginkan air pendingin mesin. Melalui metode analisis teknis, simulasi rancangan dengan pemanfaatan energi panas dari mesin pembangkit dapat dilakukan pada LNG Vaporizer tipe shell and tube.
Dari hasil simulasi teknis dapat diketahui dengan flow rate LNG sebesar 4 MMSCFD akan menghasilkan daya sebesar 17230 kW dengan efisiensi 35,2%, dimana efisiensi tersebut lebih tinggi apabila dibandingkan dengan efisiensi sistem yang tidak terintegrasi. Dalam analisis ekonomi pada pola pembebanan mesin pembangkit dengan faktor kapasitas 80% dan asumsi harga listrik yang digunakan sebesar cent US$ 12 /kWh, diperoleh nilai IRR 19,7% dimana nilai IRR tersebut lebih besar dari nilai WACC (7,49%) sehingga pengembangan disain integrasi sistem layak untuk dilakukan.

Planning and procurement process of electricity generation facilities and LNG terminal facilities are still carried out separately. From a theoretical point of view, the integration of the power plant system with the regasification system at the LNG terminal is not optimal because there is still potential utilization of wasted energy both heat and cold energy which is an opportunity to improve overall system efficiency. System integration can be done by utilizing heat energy in engine cooling water and exhaust gas from the electricity generation process, while utilizing the cold energy from the LNG regasification process to decrease temperature of engine cooling water. Through a technical analysis method, design simulation with the utilization of heat energy from the gas engine can be carried out on the shell and tube type LNG Vaporizer.
The results of the technical simulation can be seen that the LNG flow rate of 4 MMSCFD will produce power of 17230 kW with an efficiency of 35.2%, where the efficiency is higher compared to the efficiency of a standalone system. In the economic analysis, base on loading profile of gas engine with a capacity factor of 80% and the assumption of the electricity price at cent US $ 12 / kWh, an IRR value of 19.7% was obtained where the IRR value was greater than the WACC value (7.49%), the result shows that development of system integration design is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52637
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadya Fajrin Azzahra
"Neraca Gas Bumi Indonesia 2018-2027 mengidentifikasi bahwa pasokan gas bumi secara alamiah akan cenderung menurun sementara permintaan gas bumi terus meningkat seiring dengan meluasnya penggunaan gas bumi, baik digunakan sebagai bahan baku, proses produksi, maupun sebagai bahan bakar, terutama pada pembangkit listrik yang telah beroperasi dan pembangkit listrik baru yang akan datang. Dengan kondisi tersebut, liquefied natural gas (LNG) memegang peranan penting dalam memenuhi kekurangan antara pasokan dan permintaan gas bumi untuk menjaga keandalan energi. Sehubungan dengan rencana pembatasan ekspor LNG oleh Pemerintah Indonesia untuk memenuhi kebutuhan LNG domestik, kesiapan terminal regasifikasi LNG harus diperhatikan. Investasi tangki penyimpanan LNG sekitar 45% dari total capital expenditure (CAPEX) (Mokhatab, 2014), sehingga perlu mempertimbangkan pemilihan tangki penyimpanan LNG yang optimal untuk terminal LNG. Studi ini bertujuan untuk membahas pemilihan tangki penyimpanan LNG yang optimal dengan mempertimbangkan kriteria teknis dan ekonomis. Jenis tangki penyimpanan LNG yang akan dibahas meliputi opsi flat bottom tank (FBT), vertical bullet tank, dan floating storage unit (FSU). Tesis ini menganalisis aspek teknis dan ekonomi berupa jadwal penyediaan tangki, area tambahan yang dibutuhkan, ketersediaan pasar dan estimasi CAPEX serta operational expenditure (OPEX) untuk menentukan besarnya biaya infrastruktur, untuk pembangunan tangki penyimpanan LNG pada terminal regasifikasi LNG dengan kebutuhan 40 BBTUD dengan proses pengambilan keputusan menggunakan metode analytic hierarchy process (AHP). Hasil analisis menunjukkan bahwa FBT merupakan tangki penyimpanan yang paling sesuai dan optimal untuk dibangun, dengan perkiraan CAPEX terminal secara keseluruhan sekitar 64,5 juta USD dan OPEX sekitar 21 juta USD per tahun. Opsi tangki penyimpanan yang dipilih akan menghasilkan harga infrastruktur untuk terminal LNG tersebut sebesar 1.86 USD/MMBTU.

Indonesia's Natural Gas Balance 2018-2027 identifies that natural gas supply will naturally tend to decrease while natural gas demand continues to increase in line with the widespread use of natural gas, both as a raw material, for production processes, and as a fuel, especially in existing operated and the upcoming new power plants. Following this situation, liquefied natural gas (LNG) is essential in filling the gap between natural gas supply and demand to preserve energy reliability. Concerning the LNG export limitation plans by the indonesian governance to satisfy Indonesia's LNG demand, LNG regasification terminal readiness must be noted. LNG storage tank investment is around 45% of total capital expenditure (CAPEX) (Mokhatab, 2014), so it is necessary to consider the optimal LNG storage tank selection for the LNG terminal. This study aims to discuss the selection of the optimum LNG storage tank by considering technical and economic criteria. The types of LNG storage tanks that will be addressed include flat bottom tank (FBT), bullet tank (Vertical Tank), and floating storage unit (FSU) options. This paper analyzes the technical and economic aspects of the schedule, additional area required, market availability, CAPEX and operational expenditure (OPEX) estimation to determine the infrastructure costs, for the construction of an LNG storage tank at LNG regasification terminal with a demand of 40 BBTUD with a decision-making process using the analytic hierarchy process (AHP) method. The results of the analysis show that the FBT is the most suitable and optimal storage tank to be built, with an estimated overall terminal CAPEX of approximately 64.5 million USD and OPEX of approximately 21 million USD per year. The selected storage tank option will result in an infrastructure price for the LNG terminal of 1.86 USD/MMBTU."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yudho Hartanto
"Untuk mendapatkan skema terbaik dalam manajemen BOG dan pemanfaatan potensi eksergi LNG di fasilitas terminal regasifikasi Arun sebagai pembangkit energi listrik, maka dilakukan penelitian untuk membandingkan secara teknis dan komersial skema terbaik  pemanfaatan potensi exergi LNG dari proses regasifikasi.  Manajemen pemanfaatan BOG dengan laju  9.8 ton/jam dan pemanfaatan potensi exergi LNG dengan laju 150 ton/jam dengan teknologi Rankine Cycle (RC), Direct Expansion (DE)  atau kombinasi RC+DE untuk  pembangkit listrik diteliti dalam tesis ini.  Energi listrik yang dihasilkan dijual kepada PLN dengan skema jual beli listrik dengan harga maksimal 90% dari BPP sebesar Rp 1,673/kWh untuk Aceh dan Sumatera Utara. Data dari hasil penelitian dan simulasi sistem, didapatkan bahwa pemanfaatan potensi exergi LNG skema DE menghasilkan daya bersih listrik sebesar 2,703 kW, skema RC menghasilkan 3,916 kW, dan  skema DE+ RC menghasilkan 5,849 kW. Pendapatan dari penjualan daya listrik yang dihasilkan akan meningkatkan pendapatan operasional perusahaan.

To get the best scheme in BOG management and utilization of LNG exergy potential in the Arun LNG regasification facility to generate electricity, this research is conducted to compare the best technical and commercial schemes for utilization of LNG potential exergy from the regasification process. The management system is required to manage  BOG  flow rate 9.8 ton / hour and LNG cold energy utilization with flowrate 150 ton/hour during  regasification process to generate electricity using Direct Expansion (DE), Rankine Cycle (RC) or combined Direct Expansion + Rankine Cycle (DE+RC)  technologies are studied in this thesis. The electricity produced is sold to PLN under a power purchase scheme at a maximum price  90% from the BPP tariff Rp 1,673/kWh for Aceh dan Sumatera Utara.  Data from the results of research and system simulations, it is found that the utilization of the LNG exergy  in the DE scheme produces a net electric power of 2,703 kW, the RC scheme produces 3,916 kW, and the DE + RC scheme produces 5,849 kW.  The income from the sale of the electric power generated will increase Company's income."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Hafidz Aliyufa
"Indonesia merupakan salah satu negara di dunia yang mempunyai potensi minyak dan gas bumi yang cukup besar. Nusa Tenggara Timur (NTT) merupakan salah satu wilayah dengan kebutuhan gas bumi yang cukup besar. Pulau Flores merupakan salah satu pulau di NTT yang memiliki potensi energi khususnya energi terbarukan yang cukup besar. Namun, masih banyak proyek pemanfaatan energi terbarukan yang belum terealisasi. Selain rasio elektrifikasi yang rendah, Pulau Flores memiliki permasalahan lain berupa harga LPG yang masih cukup mahal dikarenakan letak terminal LPG terdekat cukup jauh. Salah satu bentuk pemanfaatan gas bumi yang dapat diaplikasikan pada terminal regasifikasi adalah LPG recovery. Hasil simulasi menggunakan Aspen Hysys v11 menunjukkan bahwa terminal regasifikasi terintegrasi dapat menghasilkan 4,54 MMSCFD gas bumi dan 9,71 ton LPG/hari. Hasil dari analisis profitabilitas mendapatkan skema S-1b sebagai opsi terbaik dari segi ekonomi dengan nilai NPV $ 14.365, IRR 8,61%, dan PBP 9,42 tahun. Harga gas plant gate yang didapat dari perhitungan adalah sebesar $ 7,6/MMBTU dengan biaya regasifikasi sebesar $ 1,7/MMBTU.

Indonesia is one of the countries in the world that has considerable oil and gas potential. East Nusa Tenggara (NTT) is one of the regions with considerable natural gas needs. Flores Island is one of the islands in NTT which has considerable energy potential, especially renewable energy. However, there are still many renewable energy utilization projects that have not yet been realized. Besides the low electrification ratio, Flores Island has another problem in the form of LPG prices which are still quite expensive because the location of the nearest LPG terminal is quite far away. One form of natural gas utilization that can be applied to the regasification terminal is LPG recovery. Simulation results using Aspen Hysys v11 show that an integrated regasification terminal can produce 4.54 MMSCFD of natural gas and 9.71 tons of LPG / day. The results of the profitability analysis obtained the S-1b scheme as the best option in terms of economics with a NPV value of $ 14,365, an IRR of 8.61%, and a PBP of 9.42 years. The gate plant gas price obtained from the calculation is $ 7.6 / MMBTU with a regasification fee of $ 1.7 / MMBTU."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hero Gunawan
"Sebagai bentuk komitmen pemerintah dalam meningkatkan capaian bauran energi nasional dari sektor energi baru terbarukan khususnya dibidang energi surya, pada tahun 2020 pemerintah telah melakukan pembangunan PLTS rooftop di beberapa gedung usulan pemerintah daerah yang meliputi gedung perkantoran, rumah sakit, sekolah, tempat ibadah dan fasilitas umum lainnya yang tersebar di beberapa wilayah di Indonesia. Penelitian ini mengambil 12 gedung pada paket pekerjaan pertama yang beratapkan datar dengan kapasitas 25 kWp dan 50 kWp sebagai obyek penelitian untuk menganalisi dampak keteknikan dan ekonomi akibat pengunaan dan perubahan tilt modul PV. Nilai investasi Rp/kWp pada kapasitas terpasang 25 kWp nilai tertinggi dimiliki oleh Gedung Islamic Center sebesar Rp. 16.458.600 dan 50 kWp dimiliki gedung RSUD Ternate dengan nilai Rp. 15.275.750 dimana faktor lokasi menjadi salah satu penyebab tingginya nilai investasi tersebut. Dari penelitian ini didapatkan bahwa nilai PVout yang dihasilkan per tahun dengan penggunaan tilt optimum pada aplikasi GSA sebesar 647.830 kWh lebih tinggi jika dibandingkan dengan hasil simulasi PVSYST sebesar  630,342 kWh dan pada penggunaan tilt sebesar 150 didapatkan output total PLTS rooftop sebesar 615.039 kWh dengan nilai NPV terbesar terletak pada gedung Bupati Sumenep sebesar Rp. 634.312.639 dengan  PBP terkecil selama 6.7  tahun  dan ROI sebesar 250.1 %. Penurungan emisi CO2 (PEy) untuk simulasi dengan pada tilt 150 didapatkan nilai sebesar  477,94 tCO2 sedangkan pada tilt optimum sebesar 481,33 tCO2.

As a form of government commitment in increasing the achievement of the national energy mix from the renewable energy sector, especially in the field of solar energy, in 2020 the government has carried out the construction of PLTS Rooftop in several local government buildings which include office buildings, hospitals, schools, places of worship and other public facilities. spread over several regions in Indonesia. This research sampled 12 buildings in the first work package with a flat roof with a capacity of 25 kWp and 50 kWp as research objects to analyze the technical and economic impacts of using and changing the tilt of the PV module. The investment value of Rp/kWp at an installed capacity of 25 kWp, the highest value was obtained at the Islamic Center Building of Rp. 16,458,600 and 50 kWp in the Ternate Hospital building with a value of Rp. 15,275,750 where the location distance is one of the causes of the high investment value. From this study it was found that the PVout value generated per year with the use of optimum tilt in the GSA application of 647,830 kWh is higher than the PVSYST simulation results of 630,342 kWh and on the use of tilt of 150 the total output of  PLTS Rooftop is 615,039 kWh with the largest NPV value located in the Sumenep Regent Building  for Rp. 634,312,639 with the smallest PBP for 6.7 years and an ROI of 250.1%. The CO2 emissions reduction (PEy) in the simulation with tilt 150 is 477.94 tCO2, while at tilt the optimum is 481.33 tCO2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Zahwan Arfellino Lutnan Azis
"Berkembangnya teknologi di era digitalisasi membuat permintaan atas penggunaan energi listrik semakin meningkat setiap tahunnya. Berdasarkan data Kementerian Energi dan Sumber Daya Mineral (ESDM) permintaan energi listrik pada tahun 2023 mencapai 1.285 kWh/kapita. Hal tersebut dapat memungkinkan permintaan energi listrik yang semakin meningkat setiap tahunnya yang dibarengi dengan penggunaan energi fosil yang semakin meningkat. Maka dari itu, dalam upaya mengurangi penggunaan energi fosil dengan mengganti menjadi penggunaan energi terbarukan seperti pemanfaatan penggunaan Pembangkit Tenaga Surya (PLTS) Atap pada lingkungan kampus diharapkan dapat menjadi contoh untuk masyarakat dalam penggunaan energi terbarukan seiring berjalannya target pencapaian pemerintah akan bauran energi nasional sebesar 23% pada tahun 2025. Dalam penelitian ini membahas terkait perancangan sistem PLTS Atap On-Grid pada Gedung Departemen Teknik Elektro FTUI dengan membandingkan dua sudut kemiringan atap untuk mengetahui sistem PLTS yang optimal dan potensi penggunaan listrik yang lebih efisien dengan ditinjau dari aspek teknis dan ekonomi melalui simulasi pada perangkat lunak PVsyst. Perancangan sistem PLTS pada penelitian ini berkapasitas 22.1 kWp dengan luas atap optimal sebesar 108 m2 . Dari hasil simulasi diperoleh sistem PLTS dengan sudut kemiringan 10° dapat memproduksi energi sebesar 31.4 mWh/tahun dan sistem PLTS dengan sudut kemiringan 45° dapat memproduksi energi sebesar 27.4 mWh/tahun. Proyek ditargetkan dengan jangka waktu investasi selama 25 tahun, dilihat dari sisi ekonomi modal awal biaya investasi memiliki selisih sebesar Rp16.200.000,00 karena sudut kemiringan 10° membutuhkan biaya kerangka tambahan, dengan jangka waktu pengembalian modal (payback period) orientasi 1 pada tahun ke-15 dan orientasi 2 pada tahun ke-16. Selain itu, perancangan kedua orientasi sistem tersebut mampu mengurangi penghematan biaya tagihan energi listrik sebesar 24.91% pada sudut kemiringan 10° dan 22.02% pada sudut kemiringan 45° selama 25 tahun.

The development of technology in the digitalization era has made the demand for electrical energy use increase every year. Based on data from the Ministry of Energy and Mineral Resources (ESDM), the demand for electrical energy in 2023 reached 1,285 kWh/capita. This can allow the demand for electrical energy to increase every year coupled with the increasing use of fossil energy. Therefore, to reduce the use of fossil energy by replacing it with the use of renewable energy such as the use of rooftop solar power plants (PLTS) in the campus environment is expected to be an example for the community in the use of renewable energy along with the government's target of achieving a national energy mix of 23% by 2025. This study discusses the design of an On-Grid rooftop PLTS system in the FTUI Electrical Engineering Department Building by comparing two roof tilt angles to determine the optimal PLTS system and the potential for more efficient electricity use in terms of technical and economic aspects through simulations on PVsyst software. The design of the PLTS system in this study has a capacity of 22.1 kWp with an optimal roof area of 108 m2 . From the simulation results, the PLTS system with a tilt angle of 10° can produce energy of 31.4 mWh/year and the PLTS system with a tilt angle of 45° can produce energy of 27.4 mWh/year. The project is targeted with an investment period of 25 years, seen from the economic side of the initial capital investment cost has a difference of Rp16,200,000.00 because the tilt angle of 10° requires additional frame costs, with a payback period orientation 1 in year 15 and orientation 2 in year 16. In addition, the design of the two system orientations was able to reduce the cost savings of electric energy bills by 24.91% at a tilt angle of 10° and 22.02% at a tilt angle of 45° for 25 years."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>