Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61647 dokumen yang sesuai dengan query
cover
Melina Dewi Murjadi
"ABSTRAK
Setiap bank pasti memiliki aktivitas pemberian kredit. Bank memiliki beberapa kriteria untuk menentukan apakah kredit akan diberikan atau tidak karena setiap kredit yang diberikan memiliki risiko dimana kredit tersebut tidak dikembalikan. Dengan kata lain, bank perlu menganalisis pengaju kredit sebelum memberikan kredit. Pemberian kredit merupakan salah satu kasus klasifikasi biner. Klasifikasi data pengaju kredit dapat menolong bank dalam memberi pertimbangan apakah pengaju kredit tersebut dapat mengembalikan kredit yang diberikan atau tidak. Support Vector Machines SVM merupakan salah satu teknik klasifikasi biner yang efektif dengan prinsip structural risk minimization. Metode SVM dikembangkan menjadi metode Fuzzy Support Vector Machines FSVM sehingga pengaruh data outlier dalam mencari solusi hyperplane dapat diperkecil. Metode Adaptive Particle Swarm Optimization APSO merupakan metode ekstensi dari Particle Swarm Optimization PSO . Pada metode FSVM berbasis APSO, APSO digunakan dalam memberikan nilai fuzzy dengan mencari titik pusat kelas setiap atribut yang dapat menghasilkan tingkat akurasi terbaik. Dalam penelitian ini, metode FSVM berbasis APSO dapat menghasilkan tingkat akurasi tertinggi dalam setiap pengolahan data. Tingkat akurasi tertinggi yang dicapai pada penelitian ini adalah sebesar 75,67 dengan metode FSVM berbasis APSO menggunakan training data sebesar 70 dan kernel linier.

ABSTRACT
Every bank has loaning activities. Banks have several criteria for determining whether credit will be given or not because every credit loan has a risk that the credit might not be returned. In other words, banks need to analyze the credit applicant before granting the loan. Credit loan is a case of binary classification. The classification from applicant rsquos data might be helpful for the bank in consideration whether the applicant will return the loan or not. Support Vector Machines SVM is a classification technique based on structural risk minimization which is effective for binary classification. This method was developed into Fuzzy Support Vector Machines FSVM , which is able to minimize the influence of outlier in finding the best hyperplane. Adaptive Particle Swarm Optimization APSO is an extension of Particle Swarm Optimization PSO. In APSO based FSVM, APSO is used to determine the fuzzy score by finding the class center of each attribute that may give the highest accuracy. In this paper, APSO based FSVM can give the highest accuracy for each process. The highest rate of accuracy is 75,67, which used APSO based FSVM with 70 of training data and linear kernel."
[, ]: 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rochmatullah
Fakultas Ilmu Komputer Universitas Indonesia, 2009
T25886
UI - Tesis Open  Universitas Indonesia Library
cover
Rochmatullah
"Tesis ini meneliti metode pengklasifikasian menggunakan metode jaringan syaraf tiruan untuk mengklasifikasikan data aroma. Data aroma adalah data keluaran dari sistem penciuman elektronik. Penelitian ini merupakan lanjutan penelitian sebelumnya yaitu metode pengklasifikasian fuzzy-neuro learning vector quantization (fnlvq). Sebelumnya telah dikembangkan pula metode matrix similarity analysis (msa) guna menentukan kriteria pemberhentian algoritma fnlvq.
Dalam penelitian ini akan dikembangkan dua metode fnlvq yang akan dioptimasikan dengan metode swarm intelligence yaitu fnlvq-particle swarm optimization (pso) dan metode swarm-fnlvq. Dengan menggunakan validasi silang, hasil dari penelitian ini menunjukkan bahwa rata-rata tingkat pengklasifikasian untuk aroma tiga campuran menggunakan fnlvq-pso sebesar 91% dan swarm-fnlvq sebesar 90% dimana kedua metode ini lebih baik daripada fnlvq yang sebesar 79% dan fnlvq-msa sebesar 77%.

This thesis examines a classification method based on artificial neural networks to classifying various mixture of fragrance which is the output of the electronic nose system. This research is a continuation research of earlier fuzzy-neuro learning vector quantization (fnlvq) classification method. Previously a matrix similarity analysis method is developed to determine a stopping criterion of fnlvq algorithms.
This research objective is to develops two modification fnlvq method based on swarm intelligence method namely fnlvq-particle swarm optimization (pso) and swarm-fnlvq methods. By using cross validation, this research showed that the average classification rate of fnlvq-pso is 91% whether swarm-fnlvq is 90%, this two methods is better than conventional fnlvq with 79% and fnlvq-msa at 77%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Puteri Kintandani
"Investasi saham merupakan salah satu jenis investasi yang paling populer karena saham memberikan tingkat keuntungan yang tinggi dibandingkan dengan jenis investasi lainnya, tetapi saham juga memiliki tingkat risiko yang tinggi. Fluktuasi harga saham memberikan peluang bagi investor untuk mendapatkan keuntungan yang tinggi. Dibutuhkan sebuah model prediksi harga saham untuk melihat pergerakan harga saham di masa yang akan datang, sehingga investor dapat menentukan waktu yang tepat untuk membeli, menahan, dan menjual saham mereka. Dengan demikian, mereka terlepas dari risiko kerugian dan memperoleh keuntungan yang besar. Terdapat beberapa studi yang membahas tentang prediksi harga saham menggunakan machine learning. Salah satunya yaitu menggunakan Support Vector Regression (SVR). Oleh karena itu, pada skripsi ini akan diuji penerapan SVR menggunakan Particle Swarm Optimization (PSO) sebagai seleksi fitur dalam memprediksi harga saham di Indonesia. Pada skripsi ini digunakan data historis saham harian dari Jakarta Stock Index dan beberapa saham pada sektor real estate dan properti. Beberapa indikator teknikal digunakan sebagai fitur dalam memprediksi harga saham. Studi ini menunjukkan bahwa prediksi harga saham menggunakan SVR dengan PSO sebagai seleksi fitur memiliki kinerja yang baik untuk semua data, fitur, dan jumlah data training yang digunakan pada skripsi ini memiliki nilai error yang kecil. Oleh karena itu, diperoleh model yang akurat untuk memprediksi harga saham di Indonesia.

Stock investing is one of the most popular types of investments since it provides the highest return among all investment types, although it is associated with considerable risk. Fluctuating stock prices provide an opportunity for investors to make a high profit. A stock price prediction model is needed to see future stock price movements, so investors can decide the right time to buy, hold, and sell their stocks which regardless of the risk of loss and gain a big profit. Several studies have focused on the prediction of stock prices using machine learning. One of them is Support Vector Regression (SVR). Therefore, this study examines the application of SVR using Particle Swarm Optimization (PSO) as feature selection in predicting Indonesian stock price. This thesis used historical daily stock data from Jakarta Stock Index (JKSE) and several real estates and property stock sectors. Some technical indicators are used as a feature in predicting stock price. The study found that stock price prediction using SVR with PSO as feature selection showed good performances for all data, features and the amount of training data used by the study have relatively low error probabilities. Therefore, an accurate model is obtained to predict stock price in Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdian Razak
"Baterai menjadi komponen kunci dalam sistem penyimpanan energi, maka dari itu sangat penting untuk mengestimasi nilai State of Charge secara akurat untuk mengelola dan memanfaatkan daya baterai secara optimal. Ketidakakuratan estimasi SoC dapat menyebabkan performa yang tidak optimal dan kerusakan baterai. Pendekatan tradisional dalam estimasi SoC cenderung kurang presisi, terutama di bawah kondisi dinamis. Oleh karena itu, untuk meningkatkan akurasi estimasi SoC, pada penelitian ini diusulkan model estimasi SoC menggunakan metode Support Vector Machine dengan Particle Swarm Optimization pada baterai Lithium-Ion dan Lithium-Polymer karena keduanya banyak digunakan dalam berbagai aplikasi, termasuk kendaraan listrik, perangkat seluler, dan peralatan elektronik. Hasil penelitian ini akan menunjukkan algoritma SVM dan PSO-SVM yang dapat digunakan untuk memprediksi estimasi pada baterai Lithium-Ion dan Lithium-Polymer. Berdasarkan penelitian yang telah dilakukan diperoleh hasil skor R-Squared menggunakan SVM pada Lithium-Ion sebesar 96,1% dan Lithium-Polymer sebesar 92,8%, serta menggunakan PSO-SVM pada Lithium-Ion 97,8% sebesar dan Lithium-Polymer sebesar 93,6%. hasil skor Mean Absolute Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 4,9% dan Lithium-Polymer sebesar 6,0%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 3,8% dan Lithium-Polymer sebesar 5,7%. hasil skor Root Mean Squeared Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 6,3% dan Lithium-Polymer sebesar 8,1%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 4,8% dan Lithium-Polymer sebesar 7,7%. Hasil analisis menunjukkan bahwa algoritma PSO-SVM dan SVM lebih cocok diaplikasikan pada baterai Lithium-Ion dibandingkan Baterai Lithium-Polymer, khusunya PSO-SVM.

Batteries become a key component in the energy storage system; therefore, it is crucial to accurately estimate the State of Charge to manage and utilise the battery power optimally. Inaccuracy in SoC estimation can lead to suboptimal performance and battery damage. Traditional approaches in SoC estimation tend to lack precision, especially under dynamic conditions. Therefore, to improve the accuracy of SoC estimation, this study proposes a SoC estimation model using Support Vector Machine with Particle Swarm Optimization method for Lithium-Ion and Lithium-Polymer batteries as they are widely used in various applications, including electric vehicles, mobile devices, and electronic equipment. The results of this research will show the PSO-SVM and SVM algorithms that can be used to predict estimates for Lithium-Ion and Lithium-Polymer batteries. Based on research that has been carried out, the R-Squared score results obtained using SVM on Lithium-Ion were 96.1% and Lithium-Polymer was 92.8%, and using PSO-SVM on Lithium-Ion was 97.8% and Lithium-Polymer was 93 .6%. The Mean Absolute Error score results were obtained using SVM on Lithium-Ion of 4.9% and Lithium-Polymer of 6.0%, and using PSO-SVM on Lithium-Ion of 3.8% and Lithium-Polymer of 5.7%. The Root Mean Squeared Error score results obtained using SVM on Lithium-Ion were 6.3% and Lithium-Polymer were 8.1%, and using PSO-SVM on Lithium-Ion was 4.8% and Lithium-Polymer was 7.7%. The analysis results show that the PSO-SVM and SVM algorithms are more suitable for application to Lithium-Ion batteries compared to Lithium-Polymer Batteries, especially PSO-SVM."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Putu Ayu Audia Ariantari
"Kestabilan perekonomian suatu negara ditentukan oleh sektor-sektor ekonomi di dalamnya. Salah satu sektor yang sedang berkontribusi secara signifikan di Indonesia adalah asuransi. Industri Asuransi sedang mengalami perluasan pada beberapa tahun terakhir. Seiring dengan perluasan tersebut, terdapat kompetisi antar perusahaan asuransi di Indonesia. Kompetisi ini menuntut perusahaan asuransi untuk lebih cerdik dalam mengungguli pasar. Tetapi, perlu diperhatikan bahwa perusahaan asuransi harus selalu sadar akan tingkat risiko yang harus ditanggungnya. Sehingga perlunya dilakukan penelitian tentang kemungkinan klaim di masa depan dari perusahaan asuransi.
Dalam penelitian ini, akan difokuskan pada sektor asuransi kendaraan bermotor di Indonesia. Model yang diajukan pada penelitian ini adalah suatu machine learning yang biasa digunakan untuk masalah klasifikasi dan prediksi. Metode klasifikasi yang digunakan adalah Support Vector Machines dan Fuzzy Support Vector Machines. Penelitian ini menggunakan data historis polis dari suatu perusahaan asuransi umum di Indonesia. Data historis polis ini terdiri dari 7.373 data dengan periode waktu berlaku polis adalah setahun terhitung dari Januari 2015 sampai dengan Desember 2016. Setelah itu, dibandingkan hasil dari kedua metode tersebut untuk mendapatkan hasil yang terbaik. Penggunaan data historis polis dari suatu asuransi umum di Indonesia ini menunjukkan bahwa Support Vector Machines menghasilkan tingkat akurasi rata rata 100 dalam klasifikasi dua kelas yaitu klaim dan tidak klaim. Memang waktu yang dibutuhkan relatif lama dalam mengklasifikasi data yaitu 4673,33 detik. Kemudian dibandingkan hasil olahan dengan klasifikasi Fuzzy Support Vector Machines dengan komposisi 80 training data dan akurasi yang dihasilkan adalah 99,23 .

Economics stability of a country is depending on each economics sector of the country. One of the most sector that give a significant contribution is Insurance. Insurance Industry is rapidly grow in recent years. As it grows bigger, there is exist one simple core that indeed affected Insurance Industry in Indonesia which is a competition. The competition is to force one Insurance company to be sharper to win the market. On the other hand, one should realize that Insurance company must be well aware of the immerging risk rate. Insurance company indeed should be prepared for the probability of high indemnities. It leads to the point that a study about future claim should be done for this matter.
In this study, one will focus on Automobile Insurance in Indonesia. The proposed model for this matter is using the mighty machine learning that is well known for classification and prediction problems. The classification methods that one will use are Support Vector Machines and Fuzzy Support Vector Machines. The aims of this study are to compare those two classification methods. This study also use a comprehensive historical policy data from a General Insurance company in Indonesia. This data consists of 7373 data with a one year policy starting from January 2015 until December 2016. One will has to compare those two methods to gain the best result. The used of this historical policy data will show that a classification using Support Vector Machines will result in 100 accuracy for binary classification, in this case will be yes or no claim within one year period. It is indeed takes longer to classify using this method. It takes about 4673,33 seconds. Then, one will compare the result with the other method which is Fuzzy Support Vector Machines with the used of 80 training data. It shows that the accuracy is 99,23 .
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frederica Yaurita
"Masalah kebangkrutan perusahaan asuransi telah menjadi perhatian khusus bagi pimpinan, karyawan, maupun nasabah perusahaan asuransi. Kekhawatiran ini muncul seiringan dengan dampak yang dapat ditimbulkan dari kebangkrutan perusahaan, yaitu perusahaan asuransi tidak mampu memenuhi kewajibannya kepada nasabah, sehingga uang premi yang telah dibayarkan oleh nasabah dalam jangka waktu tertentu menjadi sia-sia. Maka dari itu sebagai upaya untuk mencegah terjadinya kebangkrutan perusahaan asuransi, kami mencari suatu metode yang kiranya mampu mendeteksi kebangkrutan perusahaan asuransi dengan baik. Pada penelitian ini kami menggunakan beberapa algoritma machine learning, dan ternyata nilai akurasi dari simulasi program yang dilakukan mencapai 93.00 . Ini menunjukkan bahwa algoritma machine learning yang kami gunakan pada penelitian ini dapat dijadikan alat yang efektif untuk memprediksi kebangkrutan perusahaan asuransi.

Insolvency of insurance companies has been a concern of parties such as the management, the workers, and of course the consumers of insurance companies. This concern has arisen by the impact when an insurance companies got insolvent, that is, the company is unable to fulfil their obligations to customer. So, the premium that have paid by the customer becomes useless. As the attempt to prevent the insolvency of insurance company, we were looking for methods that able to make the insolvency prediction. In this study, we used several machine learning algorithms. The results are very encouraging and show that the algorithms can be a useful tool in this sector. We found that the algorithms achieved 93.00 accuracy rate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
" PSS (Power system stabilizer) telah digunakan secara luas untuk memperbaiki stabilitas sistem tenaga listrik modern. Dalam makalah ini diusulkan perancangan sistematik PSS dengan Particle Swarm Optimization (PSO) sebagai metode optimasi penalaan parameter PSS. Penalaan parameter PSS dilakukan untuk mendapatkan sistem tenaga listrik yang stabil dan teredam secara optimal. Kriteria optimal yang digunakan dalam proses penalaan parameter adalah indeks performansi Integral of Time multiplied by Absolute Error (ITAE). Performansi dari
PSS ini diujikan pada sistem tenaga listrik mesin tunggal dibawah gangguan kecil, kondisi beban dan parameter tertentu. Hasil analisa nilaieigen dan simulasi menunjukkan bahwa osilasi sistem tenaga listrik dapat teredam secara optimal melalui penalaan PSS berbasis PSO ini. Hasil simulasi juga menunjukkan bahwa performansi dinamik PSS berbasis PSO lebih baik dibandingkan PSS yang ditala secara konvensional.

Abstract
Power system stabilizer (PSS) have been extensively used in modern power system for enhancing stability of the system. This paper presents a new systematic approach for the design of power system
stabilizer using PSO (Particle Swarm Optimization). The proposed approach employs PSO search for optimal setting of PSS parameters. The optimal criteria of the Integral of Time multiplied by Absolute
Error (ITAE) is used to search optimal setting. The performance of the proposed PSS under small disturbances, loading conditions and system parameters is tested. The eigenvalue analysis and simulation
results show the effectiveness of the PSO based PSS to damp out the system oscillations. It is found that the dynamic performance with the PSO based PSS shows improved results, over conventionally tuned
PSS."
[Fakultas Teknik UI, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Industri], 2007
pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>