Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159232 dokumen yang sesuai dengan query
cover
Muhammad Siddiq Winarko
"ABSTRACT
Saat ini new psychoacytive substances NPS telah menjadi fenomena yang perlu diperhatikan karena perkembangannya yang cepat untuk menghindari hukum yang berlaku dalam suatu negara. Perkembangan senyawa katinon pada tahun 2013 tercatat sebanyak 30 senyawa katinon sintetik kemudian terjadi peningkatan pada tahun 2018 menjadi 89 senyawa katinon sintetik. Artificial intelegence AI telah menjadi menjadi alat bantu manusia dalam melakukan pengolahan data, perkembangan AI menjadi machine learning dan deep learning penggunaannya meliputi pengenalan objek, klasifikasi gambar dan pengenalan pose manusia. Struktur suatu senyawa diubah menjadi bentuk pemodelan fingerprint sebagai informasi yang akan digunakan oleh metode clustering machine learning dan deep learning untuk melakukan klasifikasi senyawa. Sedangkan metode pemodelan farmakofor akan dijadikan pembanding dengan kedua metode diatas. Metode deep learning dengan pemodelan fingerprint mampu memberikan hasil akurasi dan Kohen Kappa dengan nilai 99,32 dan 0,992. Hasil ini menunjukan bahwa metode deep learning dengan pemodelan fingerprint memiliki potensi sebagai instrumen untuk mencegah perkembangan new psychoacytive substances dengan cara menegakan hukum yang berlaku di indonesia.

ABSTRACT
Nowadays new psychoactive substances NPS have become a phenomenon that needs to be noticed because of its rapid development in order to avoid applicable law within a country. Development of the compound katinon in the year 2013 recorded as many as 30 synthetic katinon compounds then increased in 2018 to 89 synthetic katinon compounds. Artificial intelligence AI has become a tool of human being in doing data processing, AI development become machine learning and deep learning its use include object recognition, image classification and human pose recognition. The structure of a compound was transformed into a form of fingerprint modeling as the information that will be used by the clustering method machine learning and deep learning to classify the compound. While the method of modeling pharmacophore will be used as a comparison with both methods above. Deep learning method with fingerprint modeling can give accuracy and Cohen Kappa with 99.32 and 0.992. This result shows that deep learning method with fingerprint modeling has potential as an instrument to prevent expansion of new psychoactive substances by enforcing applicable law in Indonesia."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerry May Susanto
"ABSTRAK
Dalam beberapa tahun terakhir, new psychoacytive substances NPS telah berkembang cepat dalam pasaran sebagai alternatif legal obat yang diatur oleh dunia internasional dengan potensi resiko kesehatan serius. Pada tahun 2016, sebanyak 21 senyawa diantara 56 jenis NPS yang beredar di Indonesia telah teridentifikasi merupakan turunan kanabinoid. Namun, hanya 43 dari 56 NPS yang sudah diatur dalam Peraturan Menteri Kesehatan Nomor 2 tahun 2017. Kemudian diperkirakan NPS akan terus bertambah. Penelitian ini bertujuan untuk memperoleh metode yang paling baik untuk mengklasifikasi senyawa baru golongan kanabinoid dengan menggunakan deep learning untuk meningkatkan performa analisis in silico. Penelitian ini membandingkan metode deep learning dan pemodelan farmakofor. fingerprint dua dimensi dan deskriptor sifat fisikokimia digunakan sebagai bahan pembelajaran metode deep learning. Kedua model yang dihasilkan oleh dua metode akan digunakan untuk mengklasifikasikan golongan senyawa kanabinoid baru. Didapatkan deep learning menggunakan fingerprint dua dimensi sebagai metode terbaik. Metode ini memberikan hasil akurasi dan Kohen Kappa dengan nilai 0,9904 dan 0,9876 secara berurutan. Namun, metode deep learning menggunakan deskriptor dan pemodelan farmakofor memberikan nilai akurasi 0.8958 dan 0,68 dan Kohen Kappa 0,8622 dan 0,396 . Dapat disimpulkan dari nilai akurasi dan Kohen Kappa bahwa metode deep learning fingerprint memiliki potensi untuk digunakan sebagai instrumen untuk mengklasifikasi NPS.

ABSTRACT
In recent years, new psychoactive substances NPS have rapidly emerged in market purportedly as legal alternatives to internationally controlled drugs, with potential to pose serious health risks. In 2016, from 56 substances which were found in Indonesia, 21 among them were found as cannabinoid derivates. However, there only 43 out of 56 NPS which have been regulated by Ministry of Health Republic of Indonesia, yet NPS expected to increase. The purpose of this study was to gain the best method to classify new cannabinoid class substances using deep learning to enhance performance of in silico analysis. This study will compared deep learning and pharmacophore modeling methods. Two dimentional fingerprint and physicochemical properties descriptor will be used as learning parameters for deep learning method. The two models produced by two methods will be used to classify new cannabinoid substances class. Deep learning with two dimentional fingerprint was found as the best method. This method shows the highest accuracy and Cohen Kappa scores, with values of 0.9904 and 0.9876 consecutively. However, deep learning method with descriptor and pharmacophore modeling method gave accuracy 0.8958 and 0.68 and Cohen Kappa 0.8622 and 0.396 . These results conclude that deep learning method with two dimentional fingerprint gives an alternative method to be used as an instrument for NPS classification. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Eviansyah
"PCSK9 atau Proprotein Convertase Subtilisin Kexin 9 merupakan protein manusia yang memiliki peran dalam regulasi lipid dengan meningkatkan konsentrasi LDL dalam tubuh. Terjadinya kenaikan lipid dalam tubuh melebihi kadar normal dapat menyebabkan penyakit dalam tubuh. Saat ini telah terdapat beberapa obat untuk mengobati penyakit karena kelebihan kadar lipid tetapi masih sangat terbatas obat yang bekerja untuk menghambat aktivitas dari PCSK9 sebagai salah satu cara pengobatan. Pencarian obat untuk menghambat PCSK9 dapat dilakukan melalui penggunaan kembali obat dengan menggunakan pemodelan farmakofor. Pada penelitian ini digunakan senyawa training set dan test set PCSK9 dari beberapa dokumen paten dan senyawa decoy set dari DUDE. Senyawa test set dan decoy set digunakan untuk memvalidasi model yang terbentuk. Senyawa training set digunakan untuk membentuk model farmakofor dengan menggunakan perangkat lunak LigandScout. Hasil dari pembentukan, validasi dan optimasi diperoleh model farmakofor terbaik hasil modifikasi feature weight +0.1, memiliki 1 fitur gugus aromatis, 1 fitur hidrofobik, 1 fitur gugus akseptor ikatan hidrogen, dan 1 fitur gugus donor ikatan hidrogen, dengan nilai AUC100% sebesar 0,93; nilai EF1% dan EF5% sebesar 34,0 dan 6,00; nilai sensitivitas sebesar 1; dan nilai spesifisitas sebesar 0,857. Model farmakofor terpilih dijadikan sebagai kueri penapisan virtual database obat FDA-approved dari BindingDB dengan hasil penapisan didapatkan 12 senyawa hasil pemeringkatan terbaik berdasarkan nilai pharmacophore fit score tertinggi yaitu gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozine, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride. 12 senyawa hasil pemeringkatan dari penelitian adalah senyawa kandidat obat inhibitor PCSK9.

PCSK9 or Proprotein Convertase Subtilisin Kexin 9 is a human protein that has a role in lipid regulation by increasing the concentration of LDL in the body. The occurrence of an increase in lipids in the body beyond normal levels can cause disease. Currently, there are several drugs to treat disease due to excess lipid levels, but there are still limited drugs that work to inhibit the activity of PCSK9 as a treatment method. The search for drugs to inhibit PCSK9 can be done through drug repurposing using pharmacophore modeling. In this research, the training and PCSK9 test set from several patent documents and the decoy set compound from DUDE used. A test and decoy set compound were used to validate the generated pharmacophore model. The training set compound was use to generated a pharmacophore model using the LigandScout. The results of generation, validation, and optimization of the pharmacophore model obtained the best pharmacophore model modified by feature weight +0.1, which has four feature (1AR, 1H, 1HBA, 1HBD). The value of AUC 100% 0,93; EF1% and EF5% value are 34,0 and 6,00; sensitivity and specificity values are 1 and 0,857. The selected pharmacophore model was used as a virtual screening query for the FDA-approved drug database from BindingDB. The result of the screening obtained 12 compounds with the best ranking based on the highest Pharmacophore fit score, that is gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozin, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride."
Depok: Fakultas Farmasi Universitas ndonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eirenio Chanra Imey
"Studi ini bertujuan untuk pengidentifikasian zona reservoar batuan karbonat dari Formasi Baturaja pada Cekungan Sumatera Selatan dengan mengunakan metode inversi seismik. Data yang digunakan adalah data sesimik 3D post stack (441 inline & 449 crossline) serta sumur TA-6. Parameter seismik impedansi akustik dapat memetakan persebaran batuan karbonat pada Formasi Baturaja yang berada diantara batuan pasir dari Formasi Gumai dan Talang Akar. Model persebaran impedansi akustik dari hasil inversi Model Based menunjukkan rentang nilai impedansi akustik pada zona prospek sebesar 10000 m/s.gr/cc - 12000 m/s gr/cc. Dari korelasi antara nilai impedansi akustikdan porositas dapat diketahui persebaran nilai estimasi porositas pada zona prospek sebesar 10-15%. Dengan bantuan ekstraksi atribut amplitudo rms pada peta struktur persebaran batuan karbonat dapat diketahui lingkungan pengendapannya. Sehingga integrasi model hasil inversi impedansi akustik dengan nilai estimasi porositas serta didukung dengan hasil ekstraksi atribut amplitudo RMS menunjukkan pada daerah tinggian Formasi Baturaja terdapat daerah-daerah yang memiliki anomali impedansi akustik rendah dan porositas tinggi yang tersebar pada fasies body karbonat hingga back reef serta pada bagian atas zona tinggian tersebut terdapat lapisan seal sebagai penutupreservoar.

The purpose of this study is to identify reservoir zone of carbonate rock from Baturaja Formation at South Sumatera Basin. The data used from seismic 3D post stack data (441 inline & 449 crossline) and TA-6 log. Acoustic impedance seismic parameter can map the distribution of carbonate rock at Baturaja Formation where is between the sand stone from Gumai Formation and Talang Akar Formation. Distribution model of acoustic impedance from the Model Based Inversion results shows the range value of acoustic impedance at the potential zone is range from 10000 m/s.gr/cc - 12000 m/s gr/cc. From the correlation of values acoustic impedance and porosity, we can infer that distribution of porosity estimation value in potential zone range from 10-15%. With the support of RMS amplitude extraction on map structure of carbonate rocks distribution, the depositional environment can be known. Therefore integration of acoustic impedance inverted results model with porosity estimation results and supported by RMS amplitude attribute extraction results show that at the Baturaja Formation anticlines there are zones that consists of anomaly low acoustic impedance and high porosity which spread out among carbonate body to back reef and at the top part of the anticlines there is a seal as a closure of reservoir."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47660
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Susanto
"Struktur Electromagnetic Band Gap (EBG) pada aplikasi antena mikrostrip bias mencegah munculnya gelombang permukaan yang menyebabkan karakteristik antena mikrostrip menjadi tidak optimal. Gelombang permukaan timbul ketika substrat yang digunakan memiliki konstanta dielektrik lebih besar dari satu ????????????1 ??????r ?????. Teknik EBG ini dapat digunakan untuk memperbaiki karakteristik antena mikrostrip.
Dalam tesis ini, masalah medan magnet dan medan listrik pada struktur EBG suatu material dapat diformulasikan ke dalam bentuk persamaan Maxwell dalam variabel diferensial dan integral. Persamaan Maxwell dalam struktur EBG tersebut dipecahkan dengan menggunakan beberapa metode numerik yaitu dengan menggunakan metode transfer matriks dan metode Finite Difference Time Domain (FDTD). Tak seperti metode lain yang biasa digunakan, metode transfer matriks ini tidak hanya menginformasikan struktur EBG tapi juga untuk mengetahui koefisien transmisi dan refleksi. Metode ini dibatasi untuk stuktur EBG pola kubik simetri.
Persamaan-persamaan medan magnet dan medan listrik dari pemodelan yang didapat dengan menggunakan metode transfer matriks ini lebih sederhana karena mereduksi variabel-z dari medan magnet dan medan listrik sehingga menjadi lebih mudah dalam perhitungan atau proses numerik. Metode transfer matrik yang dihasilkan selanjutnya dibandingkan dengan metode FDTD dari algoritma Yee.

Electromagnetic Band Gap (EBG) structure in application of microstrip antenna can be overcome of surface wave which causes microstrip antenna characteristic becomes not optimal. The surface waves are excited when the substrate have dielectric constant more than one ????????????1 ??????r ?????. EBG technique can improve microstrip antenna characteristic.
In this thesis, electric and magnetic field in EBG structue can be formulated into the Maxwell's equations in differential and integral variable. Maxwell's equations in EBG structure is solved with transfer matrix method. Unlike other methods commonly used this technique gives access to not only EBG structure information but also transmission and reflection coefficients. This method confined to systems with cubic symmetry.
The equations of electric and magnetic field from obtained modeling with transfer matrix method to be simple because its reduce z-variable, so become more easy into numerical calculation. Transfer matrix method had a result is compared with FDTD method from Yee Algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T40860
UI - Tesis Open  Universitas Indonesia Library
cover
Aditya Susanto
"Struktur Electromagnetic Band Gap (EBG) pada aplikasi antena mikrostrip bisa mencegah munculnya gelombang permukaan yang menyebabkan karakteristik antena mikrostrip menjadi tidak optimal. Gelombang permukaan timbul ketika substrat yang digunakan memiliki konstanta dielektrik lebih besar dari satu (er > 1). Teknik EBG ini dapat digunakan untuk memperbaiki karakteristik antena mikrostrip.
Dalam tesis ini, masalah medan magnet dan medan listrik pada struktur EBG suatu material dapat diformulasikan ke dalam bentuk persamaan Maxwell dalam variabel diferensial dan integral. Persamaan Maxwell dalam struktur EBG tersebut dipecahkan dengan menggunakan beberapa metode numerik yaitu dengan menggunakan metode transfer matriks dan metode Finite Difference Time Domain (FDTD). Tak seperti metode lain yang biasa digunakan, metode transfer matriks ini tidak hanya menginformasikan struktur EBG tapi juga untuk mengetahui koefisien transmisi dan refleksi. Metode ini dibatasi untuk stuktur EBG pola kubik simetri. Persamaan-persamaan medan magnet dan medan listrik dari pemodelan yang didapat dengan menggunakan metode transfer matriks ini lebih sederhana karena mereduksi variabel-z dari medan magnet dan medan listrik sehingga menjadi lebih mudah dalam perhitungan atau proses numerik.
Metode transfer matrik yang dihasilkan selanjutnya dibandingkan dengan metode FDTD dari algoritma Yee.

Eleclromagnetic Band Gap (EBG) structure in application of microstrip antenna can be overcome of surface wave which causes microstrip antenna charactcristic becomes not optimal. The surface waves arc excited when the substrate have dielectric constant morc tiran one (er > 1). EBG technique can improve microstrip antenna characteristic.
In this thesis, electric and magnetic field in EBG structue can be formulated into the Maxwell’s equations in differential and integral variable. Maxwell’s equations in EBG structure is solved with transfer matrix method. Unlike other methods commonly used this technique gives access to not only EBG structure information but also fransmission and reflection coefficients. This method confined to systems with cubic symmetry.The equations of electric and magnetic field from obtained modeling with transfer matrix method to be simple because its reduce z-variable, so become more easy into numerical calculation.
Transfer matrix method had a result is compared with FDTD method from Yee algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25914
UI - Tesis Open  Universitas Indonesia Library
cover
Teuku Mohamad Anshar Lotan
"ABSTRAK
Tujuan dari permasalahan filtrasi spam adalah mengidentifikasi sebuah e-mail sebagai spam atau bukan spam. Dengan berkembangnya machine learning, semakin banyak permasalahan yang dapat diselesaikan. Salah satunya adalah filtrasi spam. Filtrasi e-mail spam dapat dilakukan dengan bantuan klasifikasi biner dengan machine learning untuk pengklasifikasiannya. Dalam penelitian ini akan menggunakan regresi logistik dan perceptron untuk melakukan proses filtrasi spam. Data yang digunakan menggunakan dataset Enron Spam. Hasil dari analisis menunjukkan bahwa regresi logistik menunjukkan hasil yang lebih baik dari perceptron. Di mana akurasi regresi logistik mencapai 97,02, sedangkan tingkat akurasi perceptron adalah 95,54, tetapi waktu pelatihan perceptron hanya membutuhkan waktu 3,8 sekon, sedangkan regresi logistik membutuhkan waktu 780,94 sekon.

ABSTRACT
The goal of spam filtering is to identify an e mail as spam or not spam. With the rapid development of machine learning, more problem can be solved. One of it is spam filtration. E mail spam filtering can be done with the help of binary classifier using machine learning for the classification. This research would use logistic regression and perceptron technique to filter spam. Data taken from Enron Spam dataset. The result indicate that logistic regression show better result than perceptron. Whereas the accuracy from logistic regression could reach 97,02, while accuracy from perceptron is 95,54, meanwhile the training time for perceptron takes only 3,8 second, while logistic regression takes about 780,94 second. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Kesuma Ningrat Putranta
"Inhibitor Dipeptidil peptidase 4 (DPP-4) merupakan salah satu golongan obat anti diabetes oral yang bekerja menghambat DPP-4 dalam menginaktivasi GLP-1 yang umumnya terjadi secara cepat. Namun, karena masih sedikit variasi obat antidiabetes golongan inhibitor DPP-4, membuka peluang untuk ditemukannya senyawa lain yang berfungsi sebagai inhibitor DPP-4. Studi ini bertujuan untuk mempelajari analisis penambatan molekul senyawa turunan arilmetilamin dengan DPP-4 dan menemukan parameter farmakofor yang optimum untuk proses selanjutnya yaitu, menemukan senyawa kandidat dari turunan arilmetilamin sebagai inhibitor DPP-4. Proses penambatan molekul dilakukan menggunakan software Autodock terhadap senyawa turunan arilmetilamin pada salah satu makromolekul kokristal DPP-4. Parameter farmakofor yang optimum didapatkan dari software LigandScout. Fitur farmakofor yang dihasilkan dari 33 senyawa turunan arilmetilamin divalidasi menggunakan test set yang terdiri dari senyawa actives dan decoy yang didapatkan dari DUD-E. Sebanyak 33 senyawa turunan arilmetilamin yang diuji dengan metode penambatan molekul menunjukan interaksi dengan triad katalitik (Glu 205, Glu 206, Ser 630) dari DPP-4 dan memiliki energi ikatan yang baik (G) yaitu dibawah-8,00 kkal/mol. Model farmakofor terbaik dengan nilai model farmakofor 0,9666 yang divalidasi dengan 1.079 active dan 41.373 decoy menghasilkan nilai parameter EF1% = 3,1, EF5% = 3,1, dan AUC100% = 0,50. Nilai tersebut di bawah parameter yang terdapat DUD-E. Oleh karena itu, dapat disimpulkan bahwa senyawa turunan arilmetilamin memiliki potensi sebagai inhibitor DPP-4 terbukti dari analisis interaksi yang terjadi dalam penambatan molekul, namun belum didapatkan fitur farmakofor yang optimum untuk proses penemuan senyawa kandidat senyawa turunan arilmetilamin sebagai DPP-4 inhibitor.

Dipeptydil Peptidase 4 (DPP-4) inhibitor is a class of oral antidiabetic drugs that works to inhibit activity of DPP-4 in process of inactivating GLP-1 which occurs quickly. However, there are few variations of antidiabetic drugs in that class, it opens up opportunities for other compounds to be developed as DPP-4 inhibitors. This study aims to learn about molecular docking analysis of arylmethylamine derivatives with DPP-4 and to find the optimum pharmacophore parameter for the next process. Therefore, this study can found lead compound from arylmethylamine derivatives as DPP-4 inhibitors. The molecular docking process was carried out using Autodock software. Meanwhile, the optimum pharmacophore parameters were obtained from LigandScout software. The pharmacophore features produced from arylmethylamine derivative compounds were validated using test set, consisting of actives and decoy compounds obtained from DUD-E. Molecular docking of 33 arylmethylamine derivative compounds show interactions with the catalytic triad (Glu 205, Glu 206, Ser 630) from DPP-4 and have good value of energy bond(G) which is below -8.00 kcal/mol. The best pharmacophore model with a value of scoring model pharmacophore 0.9666 was validated with 1,079 active and 41,373 decoys. This validation produced parameter values EF1% = 3.1, EF5% = 3.1, and AUC100% = 0.50 which are still below with parameters shown at DUD-E site. These results conclude that arylmethylamine derivatives have potential as DPP-4 inhibitors as showed by the interaction analysis that occurs in molecular docking, but the optimum pharmacophore feature has not been obtained for the process of finding arylmethylamine derivative lead compounds as DPP-4 inhibitors."
Depok: Fakultas Farmasi Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darell Hendry
"Chatbot sebagai asisten virtual yang digunakan oleh suatu instansi dapat memberikan manfaat bagi penggunanya. Dengan adanya chatbot, pengguna dapat berbicara langsung kepada chatbot melalui pesan singkat, yang kemudian sistem secara spontan mengidentifikasi intent pesan tersebut dan merespons dengan tindakan yang relevan. Sayangnya, cakupan pengetahuan chatbot terbatas dalam menangani pesan oleh pengguna yang semakin bervariasi. Dampak utama dari adanya variasi tersebut adalah adanya perubahan pada komposisi label intent. Untuk itu, penelitian ini berfokus pada dua hal. Pertama, pemodelan topik untuk menemukan intent dari pesan pengguna yang belum teridentifikasi intent-nya. Kedua, pemodelan topik digunakan untuk mengorganisasi intent yang sudah ada dengan menganalisis hasil keluaran model topik. Setelah dianalisis, terdapat dua kemungkinan fenomena perubahan komposisi intent yaitu: penggabungan dan pemecahan intent, dikarenakan terdapat noise saat proses anotasi dataset orisinal. Pemodelan topik yang digunakan terdiri dari Latent Dirichlet Allocation (LDA) sebagai model baseline dan dengan model state-of-the-art Top2Vec dan BERTopic. Penelitian dilakukan terhadap dataset salah satu e-commerce di Indonesia dan empat dataset publik. Untuk mengevaluasi model topik digunakan metrik evaluasi coherence, topic diversity dan topic quality. Hasil penelitian menunjukkan model topik BERTopic dan Top2Vec menghasilkan nilai topic quality 0.036 yang lebih baik dibandingkan model topik LDA yaitu -0.014. Terdapat pula pemecahan intent dan penggabungan intent yang ditemukan dengan analisis threshold proporsi.

Chatbot, as a virtual assistant used by an institution, can provide benefits for its users. With a chatbot, users can speak directly to the chatbot via a short message, which then the system spontaneously identifies the intent of the message and responds with the relevant action. Unfortunately, the scope of chatbot knowledge is limited in handling messages by an increasingly varied user. The main impact of this variation is a change in the composition of the intent label. For this reason, this research focuses on two things. First, topic modeling to find intents from user messages whose intents have not been identified. Second, topic modeling is used to organize existing intents by analyzing the output of the topic model. After being analyzed, there are two possible phenomena of changing intent composition: merging and splitting intents because there is noise during the annotation process of the original dataset. The topic modeling used consists of Latent Dirichlet Allocation (LDA) as the baseline model and the state-of-the-art Top2Vec and BERTopic models. The research was conducted on one dataset of e-commerce in Indonesia and four public datasets. The evaluation metrics of coherence, topic diversity, and topic quality were used to evaluate the topic model. The results showed that the BERTopic and Top2Vec topic models produced a topic quality value of 0.036, better than the LDA topic model, which was -0.014. There are also intent splitting and intent merging found by proportion threshold analysis."
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darell Hendry
"Chatbot sebagai asisten virtual yang digunakan oleh suatu instansi dapat memberikan manfaat bagi penggunanya. Dengan adanya chatbot, pengguna dapat berbicara langsung kepada chatbot melalui pesan singkat, yang kemudian sistem secara spontan mengidentifikasi intent pesan tersebut dan merespons dengan tindakan yang relevan. Sayangnya, cakupan pengetahuan chatbot terbatas dalam menangani pesan oleh pengguna yang semakin bervariasi. Dampak utama dari adanya variasi tersebut adalah adanya perubahan pada komposisi label intent. Untuk itu, penelitian ini berfokus pada dua hal. Pertama, pemodelan topik untuk menemukan intent dari pesan pengguna yang belum teridentifikasi intent-nya. Kedua, pemodelan topik digunakan untuk mengorganisasi intent yang sudah ada dengan menganalisis hasil keluaran model topik. Setelah dianalisis, terdapat dua kemungkinan fenomena perubahan komposisi intent yaitu: penggabungan dan pemecahan intent, dikarenakan terdapat noise saat proses anotasi dataset orisinal. Pemodelan topik yang digunakan terdiri dari Latent Dirichlet Allocation (LDA) sebagai model baseline dan dengan model state-of-the-art Top2Vec dan BERTopic. Penelitian dilakukan terhadap dataset salah satu e-commerce di Indonesia dan empat dataset publik. Untuk mengevaluasi model topik digunakan metrik evaluasi coherence, topic diversity dan topic quality. Hasil penelitian menunjukkan model topik BERTopic dan Top2Vec menghasilkan nilai topic quality 0.036 yang lebih baik dibandingkan model topik LDA yaitu -0.014. Terdapat pula pemecahan intent dan penggabungan intent yang ditemukan dengan analisis threshold proporsi.

Chatbot, as a virtual assistant used by an institution, can provide benefits for its users. With a chatbot, users can speak directly to the chatbot via a short message, which then the system spontaneously identifies the intent of the message and responds with the relevant action. Unfortunately, the scope of chatbot knowledge is limited in handling messages by an increasingly varied user. The main impact of this variation is a change in the composition of the intent label. For this reason, this research focuses on two things. First, topic modeling to find intents from user messages whose intents have not been identified. Second, topic modeling is used to organize existing intents by analyzing the output of the topic model. After being analyzed, there are two possible phenomena of changing intent composition: merging and splitting intents because there is noise during the annotation process of the original dataset. The topic modeling used consists of Latent Dirichlet Allocation (LDA) as the baseline model and the state-of-the-art Top2Vec and BERTopic models. The research was conducted on one dataset of e-commerce in Indonesia and four public datasets. The evaluation metrics of coherence, topic diversity, and topic quality were used to evaluate the topic model. The results showed that the BERTopic and Top2Vec topic models produced a topic quality value of 0.036, better than the LDA topic model, which was -0.014. There are also intent splitting and intent merging found by proportion threshold analysis."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>