Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5024 dokumen yang sesuai dengan query
cover
Rafif Hibatullah
"Distribusi Lindley diperkenalkan oleh Lindley 1958 dalam konteks inferensi Bayes. Baru-baru ini, perluasan dari distribusi Lindley diusulkan oleh Ghitany 2013 dan disebut distribusi yang dihasilkan disebut distribusi power Lindley. Skripsi ini akan memperkenalkan perluasan dari distribusi power Lindley menggunakan metode Marshall-Olkin dan akan menghasilkan distribusi power Lindley Marshall-Olkin PLMO. Distribusi PLMO dapat lebih fleksibel dalam merepresentasikan data dengan berbagai bentuk. Sifat fleksibilitas ini disebabkan oleh penambahan parameter ke distribusi power Lindley.
Beberapa sifat PLMO akan dijelaskan dalam skripsi ini, seperti probability density function pdf, cumulative distribution function cdf, fungsi survival, fungsi hazard, kuantil, dan momen ke-r. Estimasi parameter PLMO dilakukan dengan menggunakan metode maksimum likelihood. Distribusi PLMO diterapkan pada data dan akan dibandingkan dengan distribusi Lindley, power Lindley, Lindley Marshall-Olkin LMO , gamma, dan Weibull. Perbandingan model akan menggunakan nilai log likelihood, AIC, dan BIC.

Lindley distribution was introduced by Lindley 1958 in the context of Bayes inference. Recently, a new generalization of the Lindley distribution was proposed by Ghitany et al. 2013 , called power Lindley distribution. This paper will introduce an extension of the power Lindley distribution using the Marshall Olkin method, resulting in Marshall Olkin Extended power Lindley MOEPL distribution. The MOEPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the power Lindley distribution.
Some properties of the MOEPL were explored, such as probability density function pdf, cumulative distribution function cdd, hazard rate, survival function, and quantiles. Estimation of the MOEPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to data. The results were given which illustrate the MOEPL distribution and were compared to Lindley, power Lindley, Marshall Olkin Extended Lindley MOEL, gamma, and Weibull. Models comparison using the log likelihood, AIC, and BIC showed that MOEPL fit the data better than the other distributions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"

Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi  Generalized Exponential tersebut merupakan hasil generalized distribusi Exponential. Skripsi ini menjelaskan distribusi  Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likehood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

 


Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall-Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall-Olkin distribution was explained such as, the probability density function(PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall-Olkin distribution was compared with Alpha Power Weibull disstribution to decided theprominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall-Olkin distribution more suitable in modeling Aarset data (1987).

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
"Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW.

This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lady Amanda Rosa
"Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan "sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL"Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan " sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL. Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL.

One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The results of the Lindley distribution modification are commonly called the Alpha Power Transformed Lindley distribution (APTL) which has two parameters (𝛼 , 𝜃) This new APTL distribution is suitable for modeling pdf data in a declining or unimodal form and increasing, reducing, and inverted body in the form of hazard level.The various properties of the proposed distribution are discussed including probability density functions, cumulative distribution functions, survival functions, functions danger level, moment function, and moment r. Parameter model is obtained uh using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. Distribution Lindley is capable modeling data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. The waiting time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vina Dwi Maharani
"Pemodelan data survival bergantung pada bentuk dari fungsi hazard-nya. Fungsi hazard dapat berbentuk monoton (monoton naik dan monoton turun) dan non-monoton (bathtub dan upside-down bathtub atau unimodal). Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi extended inverse Lindley. Distribusi extended inverse Lindley merupakan distribusi yang dibangun dengan menggunakan transformasi terhadap distribusi Lindley dua paramater. Transformasi yang digunakan adalah transformasi power serta transformasi inverse agar distribusi yang dihasilkan mampu memodelkan data yang bersifat heavy tailed dan fungsi hazard-nya berbentuk upside-down bathtub. Pada penulisan ini, dibahas pembentukan distribusi extended inverse Lindley serta karakteristik dari distribusi tersebut yang meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, fungsi hazard, momen ke-r, skewness, kurtosis, modus dan median. Parameter dari distribusi extended inverse Lindley ditaksir menggunakan metode maximum likelihood. Pada akhir penelitian, dilakukan penerapan distribusi extended inverse Lindley terhadap data riil yaitu data survival lamanya waktu perbaikan untuk kerusakan penerima sinyal dan dibandingkan dengan distribusi lain yang mampu memodelkan data tersebut, dimana hasil dari perbandingan menunjukkan bahwa distribusi extended inverse Lindley mampu memodelkan data tersebut lebih baik dibanding dengan distribusi lain yang digunakan.

Modeling survival data depends on the shape of the hazard rate. Hazard rate may belong to the monotone (non-increasing and non-decreasing) and non-monotone (bathtub and upside-down bathtub). In this paper, a distribution called the extended inverse Lindley distribution will be introduced. Extended inverse Lindley distribution is a distribution that is formed from the transformation of the two parameter Lindley distribution. The transformations used are power transformation and inverse transformation. So that, the extended inverse Lindley distribution can model heavy tailed data with a upside-down bathtub hazard rate. In this essay, we will discuss how to construct extended inverse Lindley distribution and characteristics of these distributions. These include density function, probability distribusi function, survival function, hazard rate, r-th moment, skewness, kurtosis, mode dan median. Parameter estimation of the extended inverse Lindley distribution is using the maximum likelihood method. At the end of this paper, the application of the extended inverse Lindley distribution to real data in the form of survival data is the length of time to repair the damaged signal receiver and is compared with other distributions that are able to model the data, where the results of the comparison show that the application of the extended inverse Lindley distribution is better than the other distribution to model the data."
Depok: Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Fachrezi Az
"

Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.


This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pada tahun 1959, Sklar mengemukakan suatu teorema yang menjelaskan bahwa apabila terdapat suatu fungsi distribusi bivariat dan fungsi distribusi marginal, maka akan diperoleh suatu fungsi yang dikenal dengan copula yang dapat menghubungkan fungsi distribusi bivariat dan fungsi-fungsi distribusi marginalnya. Skripsi ini bertujuan untuk menjelaskan proses konstruksi famili copula yaitu fungsi copula yang melibatkan parameter berdasarkan distribusi bivariat eksponensial yang diturunkan oleh Marshall dan Olkin. Penurunan distribusi bivariat eksponensial Marshall- Olkin melibatkan suatu proses poisson tentang kedatangan shock pada sebuah sistem dengan 2 komponen. Kedatangan shock dianggap mengikuti fatal shock model, di mana kedatangan shock dapat berakibat fatal bagi komponen secara spontan. Fungsi copula yang terbentuk merupakan fungsi survival copula, yakni fungsi yang menghubungkan fungsi survival bivariat dengan fungsi-fungsi survival marginalnya. Pada tugas akhir ini juga akan dikaji suatu ilustrasi yang menggambarkan fenomena yang terjadi dalam proses konstruksi fungsi survival copula Marshall-Olkin."
Universitas Indonesia, 2006
S27631
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risna Diandarma
"ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).

ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1)."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivia Iolana
"Analisis data lifetime sangat penting dalam berbagai bidang ilmu pengetahuan seperti biomedis, teknik, dan ilmu kemasyarakatan. Pemodelan data tersebut dilakukan dengan menggunakan fungsi hazard dari distribusi lifetime seperti distribusi eksponensial, Weibull, lognormal, dan juga gamma. Namun, keempat distribusi tersebut tidak dapat memodelkan fungsi hazard berbentuk bathtub. Padahal, fungsi hazard berbentuk bathtub adalah yang paling sering ditemukan dalam kehidupan nyata. Oleh karena itu, akan dibentuk distribusi generalized Lindley yang lebih fleksibel dalam memodelkan fungsi hazard. Distribusi tersebut merupakan perumuman dari distribusi Lindley dengan menggunakan transformasi exponentiation. Kemudian, karakteristik-karakteristik dari distribusi generalized Lindley juga akan ditelusuri. Selanjutnya, analisis bentuk dari fungsi hazard akan menunjukkan bahwa distribusi generalized Lindley dapat memodelkan data dengan fungsi hazard yang berbentuk monoton naik, monoton turun, dan juga bathtub. Setelah itu, penaksiran parameter distribusi generalized Lindley akan dilakukan dengan metode yang paling umum digunakan yaitu metode maximum likelihood. Simulasi dengan membangkitkan data menggunakan software juga akan dilakukan dengan bantuan metode Newton-Raphson untuk melihat penaksiran parameter dari distribusi generalized Lindley.

Analysis of lifetime data is very important in various fields such as biomedical science, engineering, and social science. The modelling of lifetime data is done by using hazard function of lifetime distributions such as exponential, Weibull, lognormal, and gamma distribution. However, these four distributions cannot model data with bathtub-shaped hazard function even though it is the one mostly found in real life situation. Therefore, more flexible distribution called generalized Lindley distribution is introduced to model hazard function. The distribution is created by using transformation called exponentiation to generalize the Lindley distribution. Afterwards, some characteristics of generalized Lindley distribution will be discussed. Analysis of the hazard function will show that generalized Lindley distribution can models data with increasing, decreasing, and bathtub-shaped hazard function. In addition, parameter estimation of the distribution will be done by the usual method which is maximum likelihood estimation. Lastly, simulation using software-generated data will be displayed with help from Newton-Raphson numerical method to see the parameter estimation of generalized Lindley distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>