Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124499 dokumen yang sesuai dengan query
cover
Ilham Maulana
"Turbo expander TE dan Model Predictive Control MPC diusulkan untuk digunakan pada unit depropanizer untuk meningkatkan recovery propana dan memperbaiki kinerja pengendalian di unit tersebut. Model yang digunakan dalam MPC adalah model first-order plus dead time FOPDT, yang diuji kinerja pengendaliannya menggunakan pengujian perubahan set point SP dan gangguan, dengan ukuran kinerjanya menggunakan integral of absolute error IAE. Hasilnya menunjukkan bahwa penggunaan TE pada depropanizer mampu meningkatkan recovery propana sebesar 8,44 dari 82,11 menjadi 90,55. Sedangkan untuk struktur pengendalian, digunakan pengendalian tekanan pada TE menggunakan pengendali proportional-integral, PI, pengendalian komposisi propana pada aliran distilat menggunakan MPC dan pengendalian tekanan kolom depropanizer menggunakan MPC.
Setelah melakukan pengujian perubahan SP didapatkan bahwa kinerja pengendali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 1,62 dan 93,40. Sedangkan pada pengujian terjadinya gangguan didapatkan bahwa kinerja pengenali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 60,54 dan 6-,21 sehingga pengendali MPC lebih baik dibandingkan pengendali PI untuk digunakan pada pengendali komposisi dan pengendali tekanan pada depropanizer yang menggunakan Turbo Expander.

Turbo expander TE and Model Predictive Control MPC is suggested for depropanizer unit to increase propane recovery and improve control performance of the unit. The model used in the MPC is first order plus dead time FOPDT, which tested the performance of the control using set point and disturbance change test with measurement of the performance using integral of absolute error IAE. As a result, use of TE in the depropanizer able to increase recovery of propane of 8,44 from 82.11 to 90.55. As for the control structure, pressure control is use on the TE using proportional integral control, composition control in the distillate flow using MPC, and pressure control in depropanizer column using MPC.
After doing SP changed test, the result showed performance of MPC controller at composition control and pressure control in depropanizer can improve performance compared by PI controller of 1.62 and 93.40. and then for disturbance rejection test, the result showed the MPC controller perfromance can improve PI controller performance at composition control and pressure control in depropanizer is able to improve PI controller performance by 60.54 and 60.21. So that, MPC controller is better than PI controller if it use at composition controller and pressure controller in depropanizer unit with Turbo Expander.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rickson Mauricio
"Proses dehidrasi gas merupakan salah satu proses yang umum dijumpai pada industri pengolahan gas. Unit dehidrasi gas ini tentu diharapkan dapat beroperasi pada kondisi produksi yang optimum sehingga dapat menghasilkan produk sales gas yang memberikan keuntungan bagi kedua belah pihak. Namun, adanya kandungan hidrokarbon dan uap air pada sales gas akan menyebabkan pembentukan hidrat yang bersifat korosif pada saluran pipa. Untuk mencegah hal tersebut, gas alam yang berasal dari reservoar perlu dikeringkan terlebih dahulu sebelum dijual sebagai sales gas. Oleh karena itu, dibutuhkan sistem pengendalian proses pada bagian-bagian yang penting pada unit dehidrasi gas agar kestabilan dan keselamatan proses produksi dapat terjaga. Sistem tersebut dirancang untuk menjaga keamanan operasi dan memastikan proses berjalan dengan optimal untuk mendapatkan kualitas produk sales gas yang baik. Selama ini pengendalian hanya dilakukan menggunakan pengendali Proporsional-Integral, akan tetapi belum optimal sehingga perlu digunakan pengendali Multivariabel MPC Model Predictive Control. Penyetelan pengendali menggunakan metode Non-Adaptif DMC dan fine tuning kemudian hasil penyetelan dengan metode yang lebih baik akan dibandingkan dengan pengendali PI. Evaluasi kineja pengendalian dilihat berdasarkan seberapa cepat respon pengendali dalam mengatasi perubahan set point dan menangani adanya gangguan serta berdasarkan nilai ISE Integral Square Error. Sebagai hasilnya, metode fine tuning lebih baik digunakan dengan konstanta penyetelan P Prediction Horizon, M Model Horizon, dan T Sampling Time yang optimum adalah 14, 5, dan 3, dengan nilai ISE pada perubahan set point pada pengendalian tekanan dan temperatur sebesar 55 dan 51, atau perbaikan kinerja pengendalian sebesar 11.29 dan 16.39 dibandingkan dengan kinerja pengendali PI.

Gas dehydration process is one of the most common processes in gas processing industry. To produce sales gas that could benefit both parties, an optimum operation condition have to be obtained. However, the presence of hydrocarbon and water vapor on sales gas will lead to the formation of hydrates that are corrosive to the pipeline. Natural gas originating from the reservoir needs to be drained first before being sold as a sales gas to prevent the formation of hydrates. Therefore, a process controlling system is required in the critical parts of gas dehydration unit in order to maintain the stability and safety of the production process. This system is designed to maintain the security of operations and ensure the process runs optimally to get good quality sales gas. Current control system are mostly using Proportional Integral controller, but MPC Model Predictive Control controller is more preferable to optimize the process control. Adjustment of the controller were done using the DMC Non Adaptive method and fine tuning. The best tunning result from those two methods then will be compared with the PI controller. Evaluation of control performance is based on how fast controller could overcoming set point changes, handling disturbance and ISE Integral Square Error value. As a result, fine tuning methods are better used with P Prediction Horizon , M Model Horizon , and T Sampling Time optimization constants of 14, 5, and 3, with ISE values for set point changes in pressure control and temperatures are 55 and 51, or improvement in control performance by 11.29 and 16.39 compared to PI controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrio Aziz Makarim
"Penelitian ini bertujuan untuk merancang sebuah sistem control dari sebuah robot inverted pendulum menggunakan Model Predictive Control. Dalam penelitian akan digunakan sensor sudut dan posisi sebagai data masukkan untuk komputasi nilai keluaran yang optimal yang perlu diberikan kepada servo dan motor. Komputasi akan dilakukan di komputer yang dihubungkan dengan robot menggunakan protokol komunikasi UART. Program pada komputer juga akan menampilkan kondisi robot. Model Dinamika yang digunakan akan disimulasikan terlebih dahulu sebelum digunakan. Robot dapat mengirimkan data dari sensor dan menjalankan keluaran optimal yang sudah dikomputasi.

This research is aimed to design a control system from inverted pendulum robot using Model Predictive Control. This research will be using angular and position sensor as input for computing the optimal output for the motor and servo. The computation will be done by a computer that is connected with the robot using UART Communication Protocol. The program that is runned by the computer will also display the robot condition. Dynamics model that will be used will be simulated first before real application. The inverted pendulum robot is able to send data from sensor to the computer and run the optimal output that has been computed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Melvin, Jesse
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali MPC. Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Pada skripsi ini, sistem yang akan dikendalikan dengan metode MPC dengan constraints adalah Coupled-Tank Basic Process Rig 38-100. Model yang digunakan pada perancangan pengendali berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan pompa pada tangki pertama dan keluaran yang akan dikendalikan adalah ketinggian air pada tangki kedua.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode Aturan Kendali Ruang Keadaan. Hal tersebut dapat terlihat dari tanggapan sistem, dimana tanggapan sistem dengan menggunakan metode MPC lebih cepat serta tidak adanya overshoot maupun undershoot pada keluaran sistem saat terjadi perubahan nilai trayektori acuan.

In conventional control system, constraints, such as amplitude and slew rate of input signal are not computed in control process. This matter of course can make the control result become worst, especially when force cutting occur to input signal before it enters to the plant. To solve those problems, a MPC controller is designed. With MPC, process output can be predicted and the existence of constraints will not be ignored and, as the result, it makes output system become well. Besides improve output system quality, the existence of the constraints can also make the device works at optimum condition everytime.
In this following final thesis, system that will be controlled by MPC with constraints method is Coupled-Tank Basic Process Rig 38-100. Model that is used in controller design has state space form. This model is formed by using Least Squares method based on input and state variable data. Input system is pump in first tank and output that will be controlled is water level in second tank.
Experiments prove that MPC with constriants give better result than State Controller method. With MPC, system response become faster and there are no overshoot nor undershoot when the set point change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40525
UI - Skripsi Open  Universitas Indonesia Library
cover
Bramantyo
"Untuk menangani gangguan pada proses operasi nonlinear diperlukan suatu bentuk pengendalian. Representative Model Predictive Control (RMPC) adalah salah satu cara untuk memperoleh sekumpulan MPC lokal yang dapat merepresentasikan keseluruhan rentang operasi. MPC lokal ini nantinya digunakanpada Multiple Model Predictive Control (MMPC) untuk mensimulasikanproses operasi nonlinear multi variabel.Skripsi ini membahas penggunaan RMPC untuk memilih beberapa MPC lokal yang kemudian digunakan sebagai model pada MMPC untuk menangani gangguan. Penelitian ini menggunakan model kolom distilasi biner ?Kolom A? yang disimulasikan dengan perangkat lunak MATLAB. Variabel yang dimanipulasi adalah laju refluks dan laju boil up sedangkan variabel yang dikontrol adalah komposisi produk distilat dan komposisi produk bawah. Hasil IAE MMPC dibandingkan dengan IAE kontroler PI konvensional. Untuk gangguan single step; MPC terbaik dengan IAE 0,2564, lebih baik dari IAE kontroler PI 0,7494.Sedangkan untuk gangguan multi step; MMPC terbaik dengan IAE 0,7730, lebih baik dari IAE kontroler PI 0,9808.

In order to handle disturbances in the nonlinear operation some form of control is required. Representative Model Predictive Control (RMPC) is one way to obtain a set of local MPC which able to represent the entire operating range. The local MPC is later used in the Multiple Model Predictive Control (MMPC) to simulate the operation of nonlinear multi-variable process. This thesis discusses the use of RMPC to select some local MPC which is then used as a model for dealing with disturbances in the MMPC. This study uses a model of a binary distillation column "Column A" which is simulated with MATLAB software. The manipulated variable is the rate of reflux and boil-up rate, while the controlled variable is the product composition of the distillate and bottom product composition. MMPC IAE results compared with conventional PI controller IAE. For single step disturbance; the best MPC with IAE 0.2564, is better than PI controller IAE 0.7494. As for the multi-step disturbance; the best MMPC with IAE 0.7730, is better than PI controller IAE 0.9808."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42595
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pada pabrik biohidrogen, unit kompresor merupakan salah satu unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya. Multivariable model predictive control (MMPC) digunakan untuk mengendalikan proses pada pabrik. Untuk mendapatkan pengendalian yang optimal, perlu dilakukan penyetelan. Penyetelan akan dilakukan pada Matlab-Simulink yang diintegrasikan dengan Aspen Plus Dynamics. Sistem pengendalian akan dibuat pada Simulink dan simulasi proses akan dilakukan pada Aspen Plus Dynamic. Penyetelan ini dilakukan dungeon metode Genetic Algorithm dungeon metode pencarian seleksi turnamen. Setelah itu, hasil penyetelan akan dijalankan juga dengan unisim design agar kinerja pengendalian dapat dibandingkan dengan penelitian sebelumnya. Model first order plus dead time (FOPDT) digunakan sebagai model prediksi MMPC. Pada penelitian ini, model FOPDT yang digunakan di MMPC pada Matlab harus dihasilkan dengan cara satuan tekanan keluaran kompresor terlebih dahulu diubah menjadi satuan persentase karena MMPC pada Matlab akan menginterpretasikan variabel-variabel perhitungan dalam satuan persen. Parameter time sampling (T), prediction horizon (P), dan control horizon (M) terbaik yang diperoleh dari metode penyetelan seleksi turnamen pada simulasi dengan unisim untuk perubahan set-point (SP) yaitu 1 detik, 18, dan 3. Untuk uji gangguan parameter T, P, dan M yang diperoleh dengan penyetelan fine tuning terbaik yaitu 1 detik, 341, dan 121. Pada simulasi Matlab-Simulink-Aspen Plus Dynamics, parameter T, P, dan M yang terbaik yaitu 0,05 detik, 18, dan 2 untuk perubahan SP dan 0,05 detik, 7, dan 1 untuk perubahan gangguan.

Hydrogen is one of the gases that has many uses, including in the chemical industry. In a biohydrogen plant, the compressor unit is one of the important units in the biomass-based biohydrogen plant. The compressor unit works to achieve high pressure for further operational conditions. Multivariable Model Predictive Control (MMPC) is used to control the processes in the plant. To obtain optimal control performance, tuning process is necessary. The tuning process will be conducted in Matlab-Simulink integrated with Aspen Plus Dynamics. The control system will be designed in Simulink, and the process simulation will be executed in Aspen Plus Dynamics. The tuning was done using the Genetic Algorithm with tournament selection search method. Subsequently, the tuning results will also be implemented in Unisim Design to compare the control performance with previous research. The First Order Plus Dead Time (FOPDT) model is applied as the prediction model for MMPC. In this study, the FOPDT model used in MMPC in Matlab must be generated by converting the compressor output pressure unit into a percentage unit due to the MMPC in Matlab will interpret the calculation variables in percent units. For the set-point change, the best time sampling (T), prediction horizon (P), and control horizon (M) parameters that were obtained from the tournament selection tuning method in the simulation with Unisim design are 1 second, 18, and 3. For disturbance testinwere obtainedest parameters are 1 second, 341, and 121 that obtained by fine-tuning method. In the Matlab-Simulink-Aspen Plus Dynamics simulation, the best parameters T, P, and M for set-point changes are 0.05 seconds, 18, and 2, and for disturbance changes are 0.05 seconds, 7, and 1."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hafizh Malik H.T., author
"Hidrogen merupakan salah satu zat/gas yang sangat banyak kegunaannya, terutama dalam industri kimia. Banyaknya unit pada sebuah pabrik membuat banyak gangguan yang akan terjadi pada suatu proses pabrik, gangguan tersebut akan berdampak kepada keefektifan dan kestabilan operasi pabrik tersebut yang juga berpengaruh kepada lingkungan sekitar. Kompresor dan steam reformer merupakan unit-unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berguna untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya sedangkan Steam Reformer merupakan proses utama dari pabrik ini yang berguna untuk menghasilkan gas H2.
Model Predictive Control (MPC) merupakan suatu pengendali yang dapat bekerja dengan basis model yang diharapkan akan menghasilkan kinerja yang lebih baik daripada pengendali lainnya. Pemodelan proses dilakukan dengan menggunakan model empirik sedangkan proses optimasi dilakukan dengan penyetelan terhadap paramter-parameter pengendali MPC seperti waktu sampel (T), prediction horizon (P), dan control horizon (M). Hasil pengendalian tekanan kompresor dan suhu steam reformer adalah pengendali MPC memiliki kinerja yang lebih baik dari pada pengendali PI dengan melakukan reidentifikasi sistem untuk mendapatkan pemodelan yang sesuai.

Hydrogen is one of the substances / gases that used by people, especially in the chemical industry. The number of units in a factory making many distractions that will occur in a process plant, the interference will affect the effectiveness and stability of the plant's operations that also affect the surrounding environment. Compressors and a steam reformer are the important units in biohidrogen from biomass plant. The compressor is useful for achieving high-pressure operating conditions while Steam Reformer next is the main process of this plant are useful to produce H2 gas.
Model Predictive Control (MPC) is a controller that can work with the base model is expected to has better performance than other controllers. Process modeling is done by using the empirical model while the optimization process is done by setting the parameter-MPC controller parameters such as sample time (T), prediction horizon (P), and the control horizon (M). The results of the compressor pressure control and temperature control of steam reformer is the MPC controller has better performance than the PI controller by performing system reidentification to obtain appropriate model.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54815
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>