Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 86562 dokumen yang sesuai dengan query
cover
Fajri Rahmadi
"ABSTRAK
Emosi merupakan suatu keadaan psikologis yang dipicu oleh aktivitas sensorik manusia baik secara sadar maupun tidak sadar. Emosi berperan penting dalam kehidupan manusia seperti dalam pengambilan keputusan, dalam mengekspresikan diri, dan lain sebagainya. Emosi dapat dihasilkan menggunakan rangsangan/stimulus tertentu seperti emosi takut dihasilkan menggunakan hal-hal yang menyeramkan seperti gambar pembunuhan, emosi bahagia dapat dipicu menggunakan stimulus gambar-gambar yang menyenangkan seperti gambar pemandangan, emosi sedih dapat dipicu menggunakan musik-musik sendu, menangis, dan hal-hal menyedihkan lainnya, dan emosi jijik dapat dipicu mengunakan stimulus yang menjijikkan seperti kotoran manusia. Beberapa stimulus yang biasa digunakan dalam penelitian adalah gambar, text, audio, atau video. Pada proses penghasilan emosi, terdapat aktivitas elektrik dalam otak manusia yang dapat direkam menggunakan perangkat bernama Elektroensefalografi EEG , rekaman gelombang otak ini juga dapat dilakukan menggunakan perangkat yang bernama neuroheadset. Penelitian ini membahas tentang pengembangan sistem akuisisi data sinyal otak menggunakan neuroheadset dan menghasilkan database yang digunakan untuk analisis emosi. Dalam penelitian ini digunakan stimulus berupa video yang terdiri dari kumpulan gambar. Setiap gambar dalam video telah melalui proses validasi sesuai dengan kelas emosi yang diinginkan. Kelas emosi yang digunakan dalam penelitian ini yaitu bahagia, jijik, sedih, dan takut. Setiap kelas emosi memiliki empat stimulus video. Proses validasi dilakukan oleh lima orang partisipan dan proses pengambilan data sinyal otak dilakukan terhadap empat orang partisipan. Pengambilan data dilakukan menggunakan perangkat neuroheadset dengan vendor Emotiv tipe Epoc. Hasil rekaman sinyal diproses menggunakan Matlab dan menghasilkan database berukuran 16x14x7680, dimana angka 16 merepresentasikan jumlah stimulus video, 14 merepresentasikan sensor Emotiv Epoc yang digunakan, dan 7680 merupakan data sinyal yang diambil selama 60 detik dengan frekuensi sampling 128 Hertz. Tingkat keberhasilan tertinggi untuk emosi bahagia, jijik, sedih, dan takut secara berurut adalah 75 , 62.5 , 62.5 , dan 75 . Tingkat keberhasilan tertinggi ini dicapai untuk variasi channel frekuensi alpha, sensor yang digunakan yaitu F7, F3, F4, dan F8. Teknik klasifikasi yang digunakan adalah feed-forward backpropagation neural network.

ABSTRACT
Emotion is a psychological state that triggered by human sensory activity both consciously and unconsciously. Emotions play an important role in human life such as decision making, self expression, and others. Emotions can be generated using certain stimuli such as feared emotions generated using scary things like murder images, happy emotions can be triggered by stimuli of fun images such as sight images, sad emotions can be triggered using melodic music, crying, and other sad things, and disgusted emotions can be triggered using disgusting stimuli like human feces. Some of the stimuli commonly used in research are using images, text, audio, or video. In the process of earning emotions, there is electrical activity in the human brain that can be recorded and processed to obtain brain signals using a device called Electroencephalography EEG , these brainwave records can also be recorded using a device called neuroheadset. This study discusses the development of data acquisition system of brain signals using neuroheadset and generate database used for emotion analysis. In this study used a video stimulus consisting of a collection of images. Each image in the video has gone through the validation process according to the desired emotion class. Four kind of emotion used in research that are happy, disgusted, sad, and scared. Each emotional class has four video stimuli. Five participants carried out the validation process and the process of retrieving the brain signals data performed on four participants. Data retrieval performed using a neuroheadset device with Emotiv vendor with Epoc type. The recording of the signal is processed using Matlab and generates a 16x14x7680 database, where the number 16 represents the number of video stimuli, 14 represents the Epoc Emotion sensor used, and 7680 is the signal data taken for 60 seconds with 128 Hertz sampling frequency. The highest recognition rate for happy, disgusted, sad, and fearful emotions are 75 , 62.5 , 62.5 , and 75 . The highest success rate achieved for alpha frequency channel variation the sensors used are F7, F3, F4, and F8. The classification technique used is feed forward backpropagation neural network."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aqsha Justirandi Padyani
"ABSTRACT
Backpropagation neural network merupakan salah satu algoritme machine learning yang mengizinkan sebuah mesin untuk melakukan pembelajaran dari sekumpulan data, sehingga tidak perlu diprogram secara eksplisit. Namun, backpropagation neural network yang baik memerlukan proses pembelajaran dengan waktu lama dengan data dalam jumlah banyak. Penelitian ini akan merancang sebuah program backpropagation neural network yang dapat dieksekusi secara paralel untuk mendapatkan waktu eksekusi yang lebih cepat. Pembuatan program ini dilakukan menggunakan OpenMP API dalam bahasa pemrograman C. Hasil pengujian membuktikan bahwa adanya pengurangan waktu eksekusi, yakni secara berurutan sebesar 2,2653 detik dan 0,5838 detik untuk masing-masing mesin pengujian yang digunakan, untuk pertambahan setiap jumlah thread yang bekerja pada program. Namun, program masih memiliki skalabilitas yang kurang bagus dikarenakan oleh terjadinya fenomena false sharing pada program. Program memiliki sifat kenaikan waktu eksekusi linier sebesar 0,9263 detik untuk setiap pertambahan jumlah sampel input. Hal ini dikarenakan oleh pertambahan jumlah sampel hanya menambah jumlah data yang harus diproses program saja. Sedangkan, program memiliki sifat kenaikan waktu eksponensial sebesar e0,0103 detik untuk setiap pertambahan jumlah dimensi sampel input. Hal ini dikarenakan oleh pertambahan jumlah dimensi tidak hanya menambah jumlah data yang harus diproses saja, melainkan juga menambah sejumlah variabel yang bekerja pada program yang menimbulkan pertambahan komputasi pada setiap sampel input.

ABSTRACT
Backpropagation neural networks is one of many machine learning algorithms that allows a machine to do a learning process from a set of data, instead of programming it explicitly. However, a good backpropagation neural network program needs a lot amount of learning time and involves huge amount of data. This experiment made a backpropagation neural network program that can be executed in parallel fashion in order to reduce its execution time using OpenMP API in C programming language. The program rsquo s test results show that there are 2.2653 and 0.5838 second execution time decreases, each corresponds to each testing machine, for every thread added to the program. However, the program rsquo s scalability is not good enough due to false sharing phenomenon that appeared in time of execution. Program has a 0.9263 second linear execution time increase for every input samples added to the program. This is because of the addition will only effect on how much data the program needs to process. However, the program has an e0.0103 second exponential execution time increase for every input sample rsquo s feature added. This is because of the addition will not only effect on how much data that needs to be processed, but also generate some additional variables involved inside program which affects the computational process of each input sample."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqy Mikoriza Turjaman
"Data yang didapat dari Polda Metro Jaya, pada arus mudik 6 hari sebelum Hari Raya Idul Fitri tahun 2017 ada sekitar 73 kasus kecelakaan lalu lintas yang disebabkan oleh rasa kantuk pada saat berkendara. Yang dimana 6 orang meninggal dunia, mengalami luka berat sebanyak 17 orang, dan luka ringan sebanyak 82 orang. Jumlah ini meningkat 16 persen dari tahun 2016 yang tercatat sebanyak 63 kejadian. Sistem pendeteksi dan prediksi kantuk dikembangkan untuk mengatasi masalah ini.
Metode peramalan untuk time series yang banyak menimbulkan proses prediksi cukup sulit dilakukan. Sistem prediksi kantuk dibangun dengan algoritme backpropagation neural network yang diharapkan mampu untuk mempelajari dan beradaptasi pada setiap pola dari data historis yang diberikan. Dengan mengenali pola dari data historis, sistem dapat memberikan prediksi dan respons yang akurat dengan akurasi sebesar 100.

Data obtained from Polda Metro Jaya, on the homecoming traffic 6 days before Idul Fitri 2017 there are about 73 cases of traffic accidents caused by drowsiness at the time of driving. Where 6 people died, severe injuries as many as 17 people, and light injuries as many as 82 people. This number increased 16 percent from the year 2016 recorded as many as 63 events. Drowsiness and prediction systems were developed to address this problem.
Forecasting methods for time series caused a lot of prediction process quite difficult. The sleep prediction system is built with backpropagation neural network algorithm expected to be able to learn and adapt to each pattern of given historical data. By recognizing patterns from historical data, the system is expected to provide accurate predictions and responses with 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Hariyanto
"ABSTRAK
Pada penelitian ini menjelaskan bagaimana pengenalan suara otomatis menggunakan bahasa daerah yang berasal indonesia yaitu bahasa sunda, yang dapat mengontrol alat-alat elektronik pada suatu rumah. Bahasa sunda merupakan bahasa daerah dengan penuturan terbanyak kedua di indonesia setelah bahasa jawa. Pengenalan suara menggunakan bahasa sunda dilakukan pada penelitian ini dengan tujuan dapat mengontrol beberapa alat elektronik didalam rumah secara langsung dengan akurasi yang baik. Adapun metode yang digunakan dalam pengenalan suara bahasa sunda adalah metode ekstraksi Mel Frequency Cepstral Coefficient (MFCC) dan metode classifikasi jaraingan saraf tiruan berbasis algoritma backpropagation. Ada 16 intruksi bahasa sunda yang digunakan dalam pengenalan suara sebagai input pada sistem, setiap instruksi memiliki 2 sampai 3 suku kata bahasa sunda. Output yang digunakan penulis dalam penelitian ini sebanyak 6 alat elektronik rumah tangga, untuk menghidupkan atau mematikan satu output dikontrol menggunakan 2 instruksi bahasa sunda. Data suara yang digunakan dalam proses pembelajaran algoritma backpropagation adalah sebanyak 480 data yang masing-masing instruksi bahasa sunda adalah 30 data suara yang sama, hasil dari proses pembelajaran adalah berupa bobot yang dapat digunakan untuk proses pengetesan hardware, berdasarkan hasil percobaan langsung didapat tingkat akurasi pengenalan sebesar 96.875% saat dilakukan testing terhadap sistem.

ABSTRACT
In this study explain how automatic speech recognition uses regional languages that originate from Indonesia, namely Sundanese language, which can control electronic devices in a home. Sundanese is the second most spoken local language in Indonesia after Javanese. Voice recognition using Sundanese language was carried out in this study to be able to directly control several electronic devices in the house with good accuracy. The method used in Sundanese speech recognition is the Mel Frequency Cepstral Coefficient (MFCC) extraction method and the artificial neural network classification method based on the backpropagation algorithm. There are 16 Sundanese language instructions used in speech recognition as input to the system; each instruction has 2 to 3 Sundanese language syllables. The output used by the author in this study was five household electronic devices, to turn on or turn off one output controlled using 2 Sundanese language instructions. Sound data used in the learning process of the backpropagation algorithm is 480 data, each Sundanese language instruction is 30 of the same sound data, the results of the learning process are in the form of weights that can be used for hardware testing, based on the results of direct experiments 96.875 % when testing the system."
2019
T53572
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Irfan Herusaktiawan
"Penelitian ini mengembangkan dan menganalisa sistem pendeteksi plagiarisme dua bahasa berbasis Latent Semantic Analysis untuk karya tulis berbahasa Indonesia dan referensi berbahasa Inggris. Sistem pendeteksi plagiarisme menggunakan algoritma backpropagation neural network untuk melakukan klasifikasi pasangan karya tulis berbahasa Indonesia dan Inggris yang sudah dinilai tingkatan plagiarismenya secara manual. Sistem dapat memperoleh klasifikasi akurasi F-measure sampai dengan 92.75.
Hasil percobaan menunjukkan bahwa akurasi tertinggi dapat diperoleh jika menggunakan metode term frequency binary dalam penghitungan jumlah kata dan penggunaan frobenius norm, vector angle slice, dan vector angle pad sebagai pilihan fitur untuk masukan backpropagation neural network.

This research aims to develop and analyse dual language plagiarism detection system based on Latent Semantic Analysis for papers with Indonesian language and reference text with English language. The plagiarism detection system uses backpropagation neural network algorithm to classify pairs of Indonesian and English papers which plagiarism levels has been graded manually. The system has reached classification accuracy using F measure metric up to 92.75.
Experiment results show that the highest accuracy obtained when using term frequency binary method in counting frequency of words and using frobenius norm, vector angle slice, and vector angle pad features for backpropagtion neural network input.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Setyoko
"Berbagai metode pengembangan roket telah dilakukan, namun tidak semua orang bisa mengikuti perkembangannya karena teknologi roket merupakan teknologi rahasia yang pada akhirnya menyebabkan tidak adanya referensi. Kendali roket merupakan tahapan yang paling penting dari pengembangan teknologi roket yang pengembangannya hanya bisa dilakukan jika mempunyai data atau model. Penelitian ini mencoba untuk mendapatkan data penerbangan roket dari simulator pesawat X-Plane kemudian mengembangkan kendali roket menggunakan Neural Network. Konsekuensi yang ditimbulkan karena pemakaian simulator pesawat untuk menerbangkan roket akan dijadikan bahan analisis apakah data yang dihasilkan dari penerbangan roket mempunyai mekanisme fisika layaknya roket.
Pengujian terhadap sistem kendali Neural Network berbasis Direct Inverse Control Open-Loop dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Sistem kendali roket yang dibuat menggunakan metode backpropagation dengan pembatasan pengendalian yaitu hover, sebuah trajectory terbang roket yang mempunyai pengaruh paling besar dalam jangkauan dan arahnya. Dari hasil pengujian ini diketahui bahwa data yang dihasilkan mempunyai dinamika gerak layaknya roket dan sistem kendali hover roket yang dibuat mempunyai kemampuan yang baik.

Various methods of rocket development have been done, but not everyone can follow its development because rocket technology is a secret technology that ultimately leads to no reference Rocket control is the most important stage of development of rocket technology whose development can only be done if it has data or models. In this study trying to get rocket flight data from the X Plane aircraft simulator then develop rocket control using Neural Network. The consequences of using the aircraft simulator to fly the rocket will be used as an analysis material whether the data generated from the rocket flight has a rocket physics mechanism.
Testing of Neural Network control system based on Direct Inverse Control Open Loop is done to know the reliability of control system designed. The rocket control system created using backpropagation method with control limitation is hover, a rocket flying trajectory that has the greatest influence in its range and direction. From the results of this test is known that the resulting data has the dynamics of motion like a rocket and rocket hover control system is made to have good ability.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Mazarino Zhafir
"ABSTRAK

Proses deteksi tumor otak dengan komputer dilakukan melalui empat tahapan utama. Pada tahap awal dilakukan pra-proses dengan median filter untuk memperbaiki kualitas citra. Kemudian dilanjutkan dengan ekstraksi fitur menggunakan dekomposisi wavelet haar bertingkat tiga agar ukuran citra tidak terlalu besar, hanya 1/8 dari ukuran citra asalnya. Setelah itu dilakukan proses reduksi dimensi menggunakan Principal Component Analysis (PCA). PCA menentukan komponen penting dari citra dengan melihat dari varians yang direpresentasikan oleh nilai eigen, sehingga jumlah komponen yang akan dimasukkan ke proses pembelajaran tidak terlalu banyak, untuk menghindari curse of dimentionality. Baru setelah itu dilakukan proses pembelajaran menggunakan metode Backpropagation Neural Network (BPNN) dengan 10 hidden neuron, dimana proses pelatihan dan pengujian dilakukan untuk mendapatkan bobot dan bias yang terbaik dan kemudian diuji. Hasil akurasi pengenalan pada kondisi awal ini mencapai 87%, sementara pada kondisi ideal yang menggunakan dekomposisi wavelet haar bertingkat empat dan 3 hidden neuron pada BPNN mencapai akurasi pengenalan 100%.


ABSTRACT

Brain tumor detection process by the computer is going through four main step. First is pre-processing that using median filter to enhance the image quality. The second is feature extraction using level-3 haar wavelet decomposition, so that the image is not too big, only 1/8 of the original size . The third is dimentionality reduction using Principal Component Analysis (PCA). PCA determine the principal component of the image from variances, which represented by eigen value. So the component that will be used in learning step is much fewer, to avoid the curse of dimentionality. And the last step is learning, using Backpropagation Neural Network (BPNN) with 10 hidden neuron. The BPNN going through training and testing phase. BPNN will find its optimal weight and bias, and those weight and bias are being tested. The result from BPNN could distinguish images into normal and tumor, with accuracy 87% in default condition. In ideal condition, which is using level-4 haar wavelet decomposition and 3 hidden neuron in BPNN, the accuracy is 100%.

"
Fakultas Teknik Universitas Indonesia, 2015
S60000
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Budi Utomo
"Kekuatan suatu struktur tidak hanya dipengaruhi oleh faktor usia tetapi juga pengaruh dari gaya eksternal yang dapat mempengaruhi kekuatan suatu bangunan. Getaran gempa dapat menyebabkan kegagalan bangunan struktur yang sangat berbahaya jika kerusakan pada struktur dapat menyebabkan bangunan runtuh dan menimbulkan korban jiwa. Pada penelitian ini dibuat sistem yang dapat mengevaluasi gedung berbasis getaran untuk mendeteksi respon struktural melalui parameter dinamis yang diambil dari pengukuran akselerasi. Selanjutnya penggunaan metode berbasis Deep Neural Network digunakan sebagai prediksi informasi apabila informasi dari data mentah tidak tersedia ataupun mengalami anomali. Menggunakan studi kasus gempabumi Sumur, analisis respon dinamis berupa rasio amplifikasi menunjukkan perbesaran hingga 7.2 kali, analisis floor spectra ratio menunjukkan frekuensi alami gedung sebesar 0.75 Hz dan analisis perubahan frekuensi natural gedung tidak menunjukkan adanya perubahan frekuensi alami gedung setelah gempa yaitu sebesar 0.84 Hz setelah terjadinya gempabumi tersebut. Penggunaan Deep Neural Network untuk prediksi respon struktur menunjukkan nilai performa MAE ; 0,00091, RMSE : 0,00150 dan MAPE :0,51048. Penggunaan machine learning ini juga dapat memberikan informasi respon struktur bangunan ketika sensor mengalami malfungsi pada kejadian gempa tersebut.

The strength of a structure is not only influenced by the age factor but also the influence of external forces that can affect the strength of a building. Earthquake vibrations can cause structural failure which is very dangerous if damage to the structure cause the building to collapse and cause casualties. In this research, a system that can evaluate buildings based on vibration is created to detect structural responses through dynamic parameters taken from acceleration measurements. Furthermore, the use of Deep Neural Network-based methods is used as information prediction if information from raw data is not available or experiences anomaly. Using the Sumur earthquake case study, the dynamic response analysis in the form of amplification ratios shows a magnification of up to 7.2 times, floor spectra ratio analysis shows the natural frequency of the building at 0.75 Hz and the analysis of changes in the natural frequency of the building does not show any change in the natural frequency of the building after the earthquake, which is 0.84 Hz after the earthquake. the earthquake. The use of Deep Neural Network for predicting structural response shows the value of MAE performance; 0.00091, RMSE : 0.00150 and MAPE : 0.51048. The use of machine learning can also provide information on the response of the building structure when the sensor malfunctions in the earthquake event."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fathi Fadlian
"Pengendalian pesawat terbang merupakan suatu tahap terpenting dalam pengembangan teknologi aviasi yang hanya dapat dilakukan jika memiliki data penerbangan dan model pesawat. Pengambilan data penerbangan dilakukan menggunakan simulator penerbangan ultra-realistis, X-Plane. Algoritma Neural Networks dipilih sebagai metode untuk memodelkan dan mengidentifikasi sistem pesawat terbang juga sebagai pengendali sistem tersebut yang akan terbentuk dalam sebuah kesatuan Direct Inverse Control. Pengujian dan pembelajaran open loop pada sistem Direct Inverse Control dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Batasan pada penelitian ini adalah kondisi cruising ideal dimana merupakan kondisi terbang pesawat yang memakan hampir 90% dari total penerbangan. Dari hasil pengujian dapat diketahui bahwa data yang dihasilkan simulator sesuai dengan dinamika pergerakan pesawat terbang pada kondisi cruising dan sistem kendali yang dibuat memiliki keandalan yang baik.

Flight control is the most important stage in the development of aviation technology which can only be done if flight data and aircraft models have been acquired. Flight data acquisition is carried out using an ultra-realistic flight simulator, X-Plane. Neural Networks algorithm is chosen as a method for modeling and identifying aircraft systems as well as controlling the system which will be formed in a Direct Inverse Control unit. Open loop testing and learning in the Direct Inverse Control system is carried out to determine the reliability of the designed control system. The limit of this study is in the ideal cruising conditions which consume almost 90% of total flights time. From the test results, it can be seen that the data generated by the simulator is in accordance with the dynamics of aircraft movements in cruising conditions and the designed control system has good reliability."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>