Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 80048 dokumen yang sesuai dengan query
cover
Matthew Hardhi
"ABSTRACT
Penggunaan bahan bakar fosil berujung pada berbagai macam kerusakan lingkungan. Salah satu bahan bakar alternatif potensial untuk menggantikan penggunaan bahan bakar fosil ialah hidrogen, dikarenakan tingginya nilai kalorifik hidrogen dan emisinya yang hanya berupa uap air dan oksigen apabila dikonsumsi sebagai bahan bakar. Namun demikian, mayoritas proses produksi hidrogen masih bergantung pada sumber fosil dan sangat mengonsumsi energi, seperti pirolisis bahan bakar fosil. Selama dua dekade terakhir, penggunaan potensial sistem Microbial Electrolysis Cell MEC telah banyak diteliti sebagai sarana produksi hidrogen. Selain konsumsi energi yang sangat rendah, sistem MEC ini mampu menggunakan limbah lumpur sebagai substrat bagi komunitas bakteri di dalamnya. Satu masalah besar yang senantiasa timbul dalam penggunaan sistem MEC ialah keberadaan metanogen, yaitu bakteri penghasil metana. Metanogen ini mengonsumsi biohidrogen yang diproduksi pada katoda MEC sehingga menurunkan yield produksi biohidrogen. Penelitian ini mengemukakan metode kontrol biologis melalui pengenalan koloni terisolasi bakteri denitrifikasi ke dalam sistem MEC dalam wujud bioelektroda diperkaya sebagai kompetitor alami metanogen, dengan tujuan akhir untuk menginhibisi pertumbuhan metanogen. Penelitian akan dilakukan dalam konfigurasi MEC satu-ruang single-chamber. Komposisi gas headspace reaktor yang diperkaya dengan denitrifier akan dibandingkan dengan reaktor kontrol untuk menguji kebenaran hipotesis. Hipotesis akan diuji melalui analisis komposisi gas masing-masing reaktor. Hasil penelitian menunjukkan bahwa reaktor yang telah diperkaya dengan denitrifier mampu meningkatkan produksi H2 dalam beberapa siklus pengerjaan, dimana pada siklus kedua produksi H2 meningkat sebesar 100 apabila dibandingkan terhadap reaktor kontrol.

ABSTRACT
The intense usage of fossil fuel has led to the release of pollutants that are closely linked with the global warming phenomena, causing a variety of irreconcilable environmental destruction. One potential alternative fuel to replace fossil based fuels is hydrogen, as it possesses high calorific content and only emits water vapor and oxygen on usage. However, the majority of hydrogen production processes still rely on fossil based resources as well as energy consuming such as fossil fuel pyrolysis. In the past two decades, the potential use of microbial electrolysis cell MEC reactor to produce biohydrogen has been continuously researched. Aside from a very low energy input, it can utilize wastewater sludge as a feed for the bacterial community. A persistent problem present in all MEC usage is the presence of methanogens or methane producing bacteria. The methanogens consumes produced biohydrogen at the cathode of the MEC, reducing significant net biohydrogen yield. Numerous methods based on antibiotics, chemicals, and physical manipulations have been attempted. However, biological methods are still left largely unexplored. This research proposes the introduction of biological control method through bioelectrode enrichment with isolated colony of denitrifying bacteria to the MEC system as natural competitor to methanogens, ultimately aiming for inhibition of methanogenic, hydrogenotrophic microbial growth. The research will be done based on a single chambered MEC configuration. Composition of headspace gas in a denitrifier enriched reactor will be compared with control one to confirm the hypothesis. Hypothesis will be tested through analyzing the composition of evolved gas in each reactor. The experiment proves that in several consequent cycles, denitrifier enriched reactor increases H2 production such as in the second cycle, where H2 production increases 100 when compared to control reactor. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizka Diva Pratiwi
"Sebuah terobosan ide terbaru untuk memproduksi bahan bakar hidrogen adalah dengan memanfaatkan biomassa dalam sistem bioelektrokimia, salah satunya adalah Microbial Electrolysis Cell (MEC). MEC adalah sebuah metode untuk memproduksi gas hidrogen dari material organik. Selain konsumsi energi yang sangat rendah, sistem MEC ini mampu menggunakan limbah lumpur sebagai substrat bagi komunitas bakteri di dalamnya. Upaya yang dapat dilakukan untuk meningkatkan produksi hidrogen adalah dengan mengoperasikan MEC pada jarak antar elektroda yang optimal. Salah satu masalah besar yang senantiasa timbul dalam penggunaan sistem MEC ialah keberadaan metanogen, yaitu bakteri penghasil metana yang dapat menurunkan yield produksi biohidrogen. Kultur bakteri yang digunakan akan divariasikan, yaitu mixed culture dan bakteri gram negatif. Penelitian ini akan menggunakan metode kontrol biologis dengan bioelektroda yang diperkaya bakteri denitrifier untuk menginhibisi pertumbuhan metanogen. Variasi jarak antar elektroda dilakukan untuk menemukan kondisi yang optimal. Komposisi gas headspace reaktor akan diuji menggunakan Gas Chromatography untuk menganalisis kandungan hidrogen dan metana. Penggunaan bakteri mixed culture sebagai kultur bakteri sistem MEC dapat memproduksi hidrogen 96,8% lebih banyak dibandingkan dengan bakteri gram negatif. Penambahan  isolat Pseudomonas stutzeri terbukti dapat menurunkan kadar metana pada sistem MEC sebesar 83,7% dengan. Berkurangnya jarak antar elektroda dari 1 cm ke 0,5 cm dapat meningkatkan kadar hidrogen 65%.

The latest breakthrough idea for producing hidrogen fuel is by utilizing biomass in bioelectrochemical systems, which is Microbial Electrolysis Cell (MEC). MEC is a method for producing hidrogen gas that is managed from organic materials. In addition to very low energy consumption, the MEC system is able to use sludge waste as a substrate for the bacterial community to be implemented. The rate of hidrogen production with MEC is relatively lower when compared to air fermentation and electrolysis methods. Efforts that can be made to increase hidrogen production are by increasing the MEC at optimal distance between electrodes. One of the major problems that arises from the use of the MEC system is methanogens, the methane-producing bacteria causing loses of biohidrogen production. The bacterial cultures used will be varied, which are  mixed cultures and gram negative bacteria. This study will use biological control methods in bioelectrode forms enriched with denitrifier bacteria to inhibit the growth of methanogens. Variation in the distance between electrodes is done to find the optimal condition. The composition of the reactor chamber gas headspace will be supported by using Gas Chromatography to analyze hydrogen and methane reserves. Using a mixed culture of bacteria as a bacterial culture system MEC can produce hydrogen 96.8% more if compared to gram negative bacteria. The addition of denitrifier isolates was shown to reduce methane levels in the MEC system by 83.7% by using Pseudomonas stutzeri. Reducing the distance between electrodes from 1 cm to 0.5 cm can increase hydrogen levels by 65%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putty Ekadewi
"

Masalah lingkungan seperti polusi sistem perairan telah mendorong urgensi penyusunan teknologi pengolahan limbah yang lebih baik. Nitrat adalah salah satu target pencemar yang digunakan dalam asesmen kualitas air. Saat ini, proses biologis untuk eliminasi nitrat dari sistem perairan sedang dikembangkan sebagai alternatif untuk proses-proses fisika-kimia yang sering digunakan. Microbial electrolysis cell (MEC) adalah teknologi baru yang diajukan untuk tujuan tersebut. Penelitian ini bertujuan memasangkan proses eliminasi nitrat dengan produksi biohidrogen (bio-H2) di sistem MEC. Cakupan studi ini adalah dua sistem yang disebut mini-MEC dan MEC. Kedua sistem tersebut dibedakan berdasarkan volumenya. Parameter optimum operasi (Vext dan sumber karbon) ditetapkan pada sistem mini-MEC sebelum beralih ke sistem MEC. Kondisi optimum ditentukan pada Vext 0,7 V dengan asetat sebagai sumber karbon terbaik. Sistem dievaluasi berdasarkan performa luaran elektrikal (Id, Pd), eliminasi nitrat (RE%, RNO3-), dan produksi bio-H2 (Hmax, RH2, dan YH2). Konsorsium desain (kode konsorsium: IS dan IW) disusun berdasarkan hasil penelitian sebelumnya dengan kinerja eliminasi nitrat dan lokasi isolasi sebagai kriteria desain. Konsorsium desain dibandingkan dengan konsorsium alam (S) di MEC skala 100 mL untuk proses simultan eliminasi nitrat dan produksi biohidrogen. Konsorsium IS memberikan hasil terbaik dari segi profil produksi biohidrogen dengan Hmax 10,6515 mg L-1, YH2 6,491 mg g-1, dan Rmax 0,0867 mg L-1 jam-1. Konsorsium alam S memberikan performa terendah dari ketiga konsorsium yang diuji. Data dari konsorsium IS dievaluasi terhadap model untuk pertumbuhan dan produksi biohidrogen. Model Gompertz dan logistik termodifikasi dapat mendeskripsikan data dengan baik berdasarkan parameter fit R2. Estimasi parameter model dilakukan melalui metode non-linear least square. Hasil estimasi parameter model Gompertz yang telah dioptimasi adalah 0,1659 untuk Rmax, 10,2495 untuk Hmax, dan 30,0607 untuk l. Selanjutnya, studi ini dapat dikembangkan ke arah penyusunan model prediktif profil bio-H2 pada sistem MEC berdasarkan hubungan linear antara profil bio-H2 dan pertumbuhan sel.



Environmental problems, especially pollution to water systems have urged research into cleaner wastewater treatment strategies. Nitrate is one of the main targets for water quality control. The use of biological processes to remove nitrate from water systems is being studied as alternatives to current physico-chemical practices. Microbial electrolysis cell (MEC) emerged as a new technology that is appropriate for this purpose. This research aim to pair nitrate elimination with biohydrogen production in MEC. The study worked on two scales of MECs, referred to as mini-MEC (20 mL) and MEC (100 mL). Operating parameters (Vext and carbon source) was determined on mini-MEC using axenic cultures of known denitrifying bacteria. Vext was set at 0.70 V and CH3COONa was selected as carbon source for subsequent experiments. System was evaluated based on electrical outputs (Id, Pd), nitrate elimination (RE%, RNO3-), and biohydrogen production (Hmax, RH2, and yield). Synthetic microbial consortia were designed based on isolates obtained in a previous research using nitrate elimination and site characteristics as design criteria. Designed consortia (IS and IW) was compared against naturally occurring soil microbial consortium (S) in 100 mL MEC for simultaneous biohydrogen production and nitrate elimination. Consortium IS yield better biohydrogen production profile with Hmax of 10.6515 mg L-1, YH2 at 6.491 mg g-1, and Rmax 0.0867 mg L-1 h-1. Consortium S performed the worst out of three with declining H2 concentration curves at later operation period. The data from consortium IS was evaluated against models for bio-H2 production. Modified Gompertz model could describe the data well based on comparison of fit parameter R2 against modified logistic model. Model optimization was carried out by non-linear least square methodology. Optimized parameter values were 0.1659 for Rmax, 10.2495 for Hmax, and 30.0607 for l. Future studies should explore the design of a predictive model for H2 production based on microbial growth in MEC inoculated with microbes with similar profile to IS consortium.

"
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khusnul Layli Putri Marsal
"ABSTRAK
Sistem Microbial Electrolysis Cell (MEC) merupakan teknologi yang menjanjikan untuk produksi energi alternatif hidrogen dari air limbah dengan konsumsi energi yang rendah. Laju produksi hidrogen dengan sistem MEC lebih rendah jika dibandingkan dengan produksi hidrogen menggunakan metode lain. Sejauh ini, upaya optimasi yang dilakukan masih terfokus pada desain konstruksi sistem dan faktor eksternal sehingga peninjauan optimasi laju produksi hidrogen berdasarkan transfer elektron dari mikroorganisme dalam sistem masih diperlukan. Penelitian ini dilakukan untuk meninjau pengaruh pembentukan biofilm pada anoda terhadap laju produksi hidrogen. Sistem MEC yang digunakan adalah MEC satu kompartmen, dengan kondisi operasi optimum berdasarkan pengujian penambahan variasi bakteri P. stutzeri dan P. aeruginosa sebagai inhibitor metanogen. Pada penelitian ini, pengaruh pembentukan biofilm ditinjau dengan pengaturan variasi waktu pembentukan biofilm sebelum dilakukan operasi MEC. Variasi waktu yang digunakan adalah 1, 2, 3, 4 dan 5 hari. Hasil penelitian menunjukkan bahwa adanya pengaruh pembentukan biofilm akibat waktu inkubasi terlama terhadap produksi hidrogen yang optimum. Produksi hidrogen dengan 5 hari inkubasi sebelum operasi mampu memperkaya bakteri pada biofilm yang terbentuk dan meningkatkan produksi hidrogen 70,69 lebih besar jika dibandingkan dengan reaktor kontrol.

ABSTRACT
Microbial Electrolysis Cell (MEC) is a promising technology enabling the sustainable production of hydrogen as energy alternative from wastewater with low energy input. The hydrogen production rate of MEC is relatively lower than that of other methods. So far, MEC optimization still focused on the reactor construction design and external factors while the optimization of MEC from internal factor, which is electron transfer from microorganisms in the system, is still needed. This research analyzes the effect of anodic biofilm formation to biohydrogen production in MEC system. The research will be done based on Single-Chamber MEC configuration with optimum operating conditions based on the effect of P. stutzeri and P.aeruginosa addition as methanogen inhibitor. The effect of anodic biofilm formation is adjusted by giving variation of biofilm formation time prior to MEC operation. The time variations used are 1, 2, 3, 4 and 5 days. Hydrogen concentrations produced at the cathode will be tested through Gas Chromatography and anodic biofilm morphology at the anode will be tested through Scanning Electron Microscope (SEM) in order to analyze the effect of anodic biofilm formation to hydrogen production. The optimal hydrogen yield are affected by anodic biofilm enrichment as the higher biofilm formation time occurred. Experimental results showed H2 yield with five days incubation prior to MEC operation producing up to 70.69 compared to the control."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Istia Prianti Hidayati
"Microbial Elctrolysis Cell adalah suatu sistem biokimia yang memproduksi gas Hidrogen dari bahan organik yang terkandung dalam air limbah. Produksi hidrogen dapat berkurang karena proton CO2 dan hidrogen membentuk metana dan air yang disebabkan oleh bakteri metanogenik. Katalis AC-Fe/SS dipilih karena karbon aktif memiliki luas permukaan yang tinggi serta aktivitas dan stabilitas Fe yang baik. Metode adsorpsi dan fase inversi digunakan untuk menggabungkan AC-Fe pada SS. Penelitian dilakukan dalam reaktor 100mL MEC selama 258 jam. Hidrogen dianalisis dengan GC-TCD. Pengukuran tegangan dilakukan dengan multimeter dan pertumbuhan bakteri dianalisis dengan spektrofotometer. Fraksi gas hidrogen terbesar adalah 60% dengan AC-Fe/SS dan 0,08% tanpa menggunakan katalis. Nilai densitas optik untuk pertumbuhan mikroorganisme tertinggi adalah 0,611 dengan katalis AC-Fe/SS dan 0,427 tanpa menggunakan katalis. Densitas arus tertinggi adalah 99,11 mA / m2 dengan katalis AC-Fe/SS dan 59,52 mA / m2 tanpa menggunakan katalis. Pemodelan Dudley dilakukan menggunakan Matlab dan menunjukkan bahwa Umaxe adalah 1 /hari dan Qmaxe adalah 4,6 mg-S / mg-Xe / hari memiliki efek pada total mikroorganisme yang mendekati percobaan.

Microbial Elctrolysis Cell is a biochemical system for producing Hydrogen gas from organic substances contained in wastewater. Hydrogen production can be reduced because CO2 and hydrogen protons form methane and water caused by methanogenic bacteria. The AC-Fe / SS catalyst was chosen because activated carbon had a high surface area and Fe had good activity and stability. The adsorption and phase inversion method were used to combine AC-Fe on SS. The research was carried out in a 100mL MEC reactor for 258 hours. Hydrogen was analyzed by GC-TCD. Voltage measurements was carried out with a multimeter and bacterial growth was analyzed with a spectrophotometer. The largest hydrogen gas fraction was 60% with AC-Fe / SS and 0.08% without using a catalyst. The highest optical density value for microorganism growth was 0.611 with AC-Fe / SS catalyst and 0.427 without using a catalyst. The highest current density was 99.11 mA / m2 with an AC-Fe / SS catalyst and 59.52 mA / m2 without using a catalyst. The Dudley modeling was done using Matlab and showed that Umaxe was 1 day-1 and Qmaxe was 4.6 mg-S / mg-Xe / day had an effect on the total microorganisms approaching the experiment."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dinda Rahmadita
"Elektrolisis Amonia adalah metode yang digunakan untuk menghilangkan kandungan berbahaya amonia dalam air limbah dan menghasilkan hidrogen yang dapat digunakan sebagai sumber energi alternatif. Salah satu inovasi untuk meningkatkan reduksi amonia dan produksi hidrogen yaitu dengan sistem Microbial Electrolysis Cell (MEC) merupakan teknologi dengan prospek yang memanfaatkan biomassa atau material organik, termasuk air limbah. Namun, laju reduksi amonia dan produksi hidrogen dengan sistem MEC lebih rendah jika dibandingkan dengan produksi hidrogen menggunakan metode lain. Upaya yang dapat dilakukan untuk optimasi proses reduksi amonia dan produksi hidrogen adalah dengan mengoperasikan MEC menggunakan jenis denitrifier yang tepat, dan memodifikasi elektroda dengan memberi lapisan polimer. Sistem MEC yang digunakan adalah MEC satu kompartemen, dengan kondisi operasi optimum berdasarkan pengujian penambahan variasi jenis konsorsium bakteri, yaitu konsorsium desain terdefinisi (kode: TD) dan konsorsium tak terdefinisi (kode: TT) sebagai peningkat reduksi amonia dan inhibitor metanogen yang dapat mengkonsumsi hidrogen dan mengurangi yield produksi hidrogen. Komposisi gas headspace reaktor diuji dengan menggunakan Gas Chromatography untuk menganalisis kandungan hidrogen,  komposisi ammonia diuji menggunakan Spektrofotometri, serta morfologi elektroda menggunakan Spektroskopi FTIR, dan Scanning Electron Microscope. Konsorsium TD dibandingkan dengan konsorsium TT di MEC skala 100 mL untuk proses simultan reduksi amonia dan produksi hidrogen. Konsorsium TD memberikan hasil terbaik dari segi profil produksi hidrogen dengan Hmax 0,05412 mg L-1, YH2 0,03298 mg g-1, dan Rmax 0,00524 mg L-1 jam-1. Dengan pelapisan polimer MEC mampu meningkatkan konsentrasi maksimum Hmax hingga 27,02%.

Ammonia electrolysis is a method used to remove the dangerous content of ammonia in wastewater and produce hydrogen which can be used as an alternative energy source. One of the innovations to increase ammonia reduction and hydrogen production is Microbial Electrolysis Cell (MEC) system is a technology with prospects that utilize biomass or organic materials, including wastewater. However, the rate of reduction of ammonia and hydrogen production with the MEC system is lower when compared to hydrogen production using other methods. Efforts that can be made to optimize the ammonia reduction process and hydrogen production are by operating the MEC using the right type od denitrifier, and modifying the electrodes by applying a polymer coating. The MEC system used is a one-compartment MEC, with optimal operating conditions based on variations of bacterial consortium, defined design consortium (TD) and undefined consortium (TT) as enhancers of ammonia reduction and methanogen inhibitors that can consume hydrogen and reduce hydrogen production yield. The composition of the reactor headspace gas will be supported by using Gas Chromatography to analyze hydrogen content, ammonia composition will be tested using Spectrophotometry, and the morphology of the electrodes using a FTIR Spectroscopy, and Scanning Electron Microscope. The TD consortium compares the TT consortium on a 100 mL MEC scale for the simultaneous process of ammonia reduction and hydrogen production. TD Consortium provides the best results in terms of hydrogen production profile with Hmax 0.05412 mg L-1, YH2 0.03298 mg g-1, and Rmax 0.00524 mg L-1 hour-1. With MEC polymer coating it can increase the maximum Hmax concentration up to 27.02%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siagian, Nathania Dwi Karina
"Teknologi Microbial Fuel Cell (MFC) berpotensi dikembangkan sebagai sumber energi listrik alternatif karena dapat mengkonversi berbagai substrat dari sumber yang dapat diperbaharui menjadi energi listrik menggunakan bakteri sebagai biokatalis. Limbah cair tempe merupakan salah satu bahan yang dapat dimanfaatkan sebagai substrat MFC. Penggunaan limbah cair tempe sebagai substrat MFC memberikan keuntungan dalam mengurangi biaya pembelian bakteri dan pengolahan limbah cair tempe. Saat ini, aplikasi MFC masih terbatas karena produksi listrik yang dihasilkan relatif kecil, sehingga banyak penelitian yang dilakukan untuk meningkatkan produksi listrik oleh MFC.
Penelitian ini berfokus dalam meneliti pengaruh waktu pembentukan biofilm dan penggunaan makromolekul sebagai substrat tambahan terhadap produksi listrik dari sistem MFC dengan reaktor tubular membranless dan substrat limbah cair tempe.
Hasil penelitian menunjukkan bahwa karbohidrat merupakan makromolekul dalam limbah cair tempe yang paling berpengaruh dalam produksi listrik ditandai dengan nilai penurunan kadar terbesar, yaitu 1,82%, setelah eksperimen MFC dilakukan selama 50 jam. Pembentukan biofilm pada anoda dapat meningkatkan produksi listrik hingga 10 kali lipat, sedangkan penggunaan glukosa sebagai substrat tambahan menurunkan produksi listrik hingga 60%. Hasil keluaran listrik terbesar diperoleh dari variasi waktu pembentukan biofilm 14 hari dengan kandungan EPS pada biofilm sebesar 0,13 mg/cm2. Nilai tegangan dan densitas daya maksimum yang dihasilkan berturut turut 34,81 mV dan 0,26 mW/m2.

Microbial Fuel Cell (MFC) technology has the potential to be developed as an alternative energy source since it can convert various substrates from renewable sources into electricity using bacteria as biocatalyst. Tempe wastewater is one of the material which can be utilized as MFC substrate. The use of tempe wastewater as MFC substrate gives advantages in reducing the purchasing cost of bacteria and tempe wastewater treatment. Currently, the applications of MFCs are still limited due to the relatively low electricity production, so many studies have been conducted to improve the electricity production by MFC.
This study focused on investigating the influence of biofilm formation time and the use of macromolecule as additional substrate towards electricity production from MFC system with tubular membranless reactor.
This study suggested that carbohydrate is the macromolecule contained in tempe wastewater which is the most influential for electricity production marked by the biggest decrease in macromolecule content, which is 1.82%, after MFC experiment had been carried out for 50 hours. In addition, biofilm formation on anode could improve the electricity production up to 10-folds while the use of glucose as substrate addition reduce the electricity production. The biggest electricity output was obtained from the experiment of biofilm formation for 14 days with EPS content in biofilm 0,13 mg/cm2 where the maximum voltage and power density produced was respectively 34,81 mV dan 0,26 mW/m2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64680
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luqyaanaa Mursyidah Zahra Ash-Shalehah
"Microbial Fuel Cell fotosintetik yang memanfaatkan mikroalga dikenal sebagai Microalgae-microbial Fuel Cell (MmFC). Salah satu faktor penting yang memengaruhi produksi energi oleh MmFC adalah kadar oksigen sebagai akseptor elektron. Oksigen yang dilepaskan oleh mikroalga dipengaruhi oleh cahaya dan konsentrasi karbondioksida. Pada penelitian terdahulu diketahui bahwa interaksi konsorsium Chlorella-Spirulina dapat meningkatkan produksi biomassa dan kadar oksigen. Pada penelitian ini, peningkatan produksi listrik dilakukan melalui variasi rasio konsorsium, serta pengaturan pencahayaan dan asupan karbondioksida. Variasi konsorsium dilakukan pada rasio volume 1:1, 3:2, dan 2:1. Alterasi intensitas cahaya (3000-6000 lux) dan asupan karbondioksida diberikan pada MmFC. Pada densitas optik 0,4 dan pH antara 7-8, diperoleh laju pertumbuhan mikroalga maksimum 0,09/jam dan konsentrasi 3,49 g/L pada komposisi 3:2. Kadar oksigen terlarut maksimum mencapai 6,765 dan turun hingga 0,85 ketika kenaikan produksi listrik. Kondisi ini menghasilkan rata-rata tegangan 397,21 mV dan power density 304,54 mW/m2. Asupan karbondioksida yang diberikan tidak memberikan perbedaan hasil yang signifikan terhadap kinerja optimum MmFC namun memberikan hasil lebih stabil selama proses operasi. Rata-rata tegangan dan power density yang dihasilkan adalah 409,23 mV dan 312,80 mW/m2 pada laju pertumbuhan maksimum mikroalga 0,06/jam (pH 6-8).

Photosynthetic Microbial Fuel Cell that uses microalgae is known as Microalgae-microbial Fuel Cell (MmFC). One important factor influencing the production of bioelectricity in MmFC is the oxygen content as an electron acceptor. Light and carbon dioxide influences the amount of oxygen released by microalgae. Previous research had shown that using microalgae in the form of a Chlorella-Spirulina consortium could increase biomass and oxygen production. In this study, increase in electricity production was accomplished through variations in the consortium's ratio, as well as lighting and carbon dioxide intake adjustments. Volume ratios of 1:1, 3:2, and 2:1 was used in the consortium variations. Alteration of light intensity (3000-6000 lux) and carbondioxide intake were given to MmFC. At an optical density of 0.4 and a pH between 7-8, the maximum microalgae growth rate was 0.09/hour and concentration were 3.49 g/L at 3:2 composition. The maximum dissolved oxygen level reaches 6.765 and decreases to 0.85 when electricity production increases. This condition produces an average voltage of 397.21 mV and a power density of 304.54 mW/m2. The intake of carbon dioxide given did not achieve a significant difference in performance of MmFC but shows more stable results throughout operation process. The average voltage and power density generated were 409.23 mV and 312.80 mW/m2 at a maximum microalgae growth rate of 0.06/hour (pH 6-8)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hidayati Istiqomah
"Salah satu wilayah yang sangat menjanjikan dengan keberadaan danaunya yaitu Universitas Indonesia. Universitas Indonesia (UI) memiliki enam danau dengan total luas 269.107 m2 yang sangat penting keberadaannya bagi keseimbangan lingkungan sekitarnya. Saat ini keberadaan danau UI sudah tercemar dengan nilai COD sekitar <1 - 8.000 mg/l karena banyak sampah yang masuk dan tertimbun di dalamnya, sehingga diperlukan perhatian lebih agar pencemaran yang terjadi tidak semakin meningkat. Microbial Desalination Cell (MDC) merupakan sistem pengembangan dari Microbial Fuel Cell (MFC), yang memiliki kemampuan mendesalinasi air laut serta dapat memproduksi listrik dengan menggunakan mikroorganisme sebagai pengurai limbahnya. Selain itu, metode MDC juga dapat menurunkan kadar limbah yang terkandung di dalam substrat yang digunakan. Untuk meningkatkan kinerja MDC, penelitian ini memanfaatkan arang hayati dari sekam padi untuk mengkaji performa natrium perkarbonat di chamber katoda dengan variasi konsentrasi 0,05 M; 0,1 M; 0,15 M; dan 0,2 M, serta performa penambahan konsorsium bakteri pada substrat. Hasil terbaik dari penelitian MDC ini, pada variabel konsentrasi natrium perkarbonat 0,15 M dengan penurunan COD dan BOD yaitu 93,99% dan 83,78% dan pada variabel penambahan konsorsium bakteri sebanyak 1 mL dengan penurunan COD dan BOD 90,04% dan 56,52%.

One of the most promising areas with the existence of the lake is Universitas Indonesia. Universitas Indonesia UI has six lakes with a total area of 269,107 m2 which is very important for its existence to balance the surrounding environment. Currently, the existence of UI lake has been contaminated with the COD value of about 1 to 8.000 mg L due to a lot of garbage that enters and buried in it, so that more attention is needed so that pollution will not increase. Microbial Desalination Cell MDC is a development system of Microbial Fuel Cell MFC , which has the ability to desalinate seawater and can produce electricity by using microorganisms as waste decomposers. In addition, MDC method can also reduce the level of waste contained in the substrate used. To improve the performance of MDC, this study utilizes bio charcoal from rice husks to assess the performance of sodium percarbonate in the cathode space with a variation of 0.05 M concentration 0.1 M 0.15 M and 0.2 M, and the performance of the addition of bacterial consortium on the substrate. The best results of this MDC study, in the variation of 0.15 M sodium percarbonate concentration with a decrease of COD and BOD of 93.99 and 83.78 and in variation of addition of bacterial consortium of 1 mL with decrease of COD and BOD 90.04 and 56.52.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nova Chisilia Zahara
"ABSTRAK
Penelitian Microbial Fuel Cell skala laboratorium dilaksanakan dengan tujuan untuk mengetahui kapasitas dan efisiensi produksi energi listrik dalam sistem Microbial Fuel Cell dengan menggunakan mikroorganisme. Medium yang digunakan merupakan golongan bakteri berupa isolat dari bakteri Saccharomces cereviciae. Sejumlah media dievaluasi kapasitasnya dalam memberikan fase pertumbuhan yang terbaik untuk Saccharomces cereviciae menggunakan metode Optical Density dengan Spektrofotometer pada panjang gelombang 550 nm. Proton Exchange Membrane yang digunakan adalah jenis Nafion 117, Lynctech, USA. Elektroda yang digunakan sebagai mediator elektron pada kedua kompartmen baik anoda maupun katoda, merupakan elektroda grafit di dalam bejana bervolume 5 x 10-2 m. Sedangkan pada kompartmen katoda merupakan elektrolit berupa campuran senyawa K3Fe(CN)6 dan K2HPO4. Mikroba yang telah dikultur akan diaplikasikan ke dalam reaktor Microbial Fuel Cell untuk dibaca kemampuannya dalam menghasilkan energi listrik dengan mengaplikasikannya pada sistem elektrik yaitu sebuah digital multimeter (microampermeter) dengan penghubung kabel sepanjang 3,0 x 10-1 m. Elektron dialirkan melalui sebuah grafit seluas 1.46 x 10-3 m2 untuk diukur besar kuat arus dan tegangannya. Sejumlah faktor perlu dikontrol sehingsga mikroba dapat menghasilkan energi listrik secara efisien, diantaranya dengan melakukan pengukuran terhadap derajat keasaman dan nilai DO dalam kompartemen anoda. Dari hasil penelitian MFC, diperoleh efisiensi listrik sebesar 53,90% untuk perbandingan antara meggunakan dan tanpa riboflavin sebagai mediator. Sedangkan penambahan minyak nabati ke dalam sistem MFC menghasilkan nilai optimum sebesar 189 µA. Selain itu, dalam penelitian ini diperoleh bahwa minyak nabati yang ditambahkan saat inokulasi Saccharomyces cerevisiae, terbukti dapat meningkatkan kadar riboflavin hingga 42,19 % selama 35 jam proses inkubasi.

ABSTRACT
A laboratory-scale of Microbial Fuel Cell carried out in order to determine the capacity and efficiency of electricity production in microbial fuel cell systems by using microorganisms. The medium used is an isolate culture of Saccharomces cereviciae. A number of media evaluated its capacity to provide the best growth phase for Saccharomces cereviciae using Optical Density method with spectrophotometer at a wavelength of 550 nm. Proton Exchange Membrane used was kind of Nafion 117, Lynctech, USA. Electrodes are used as electron mediator in both anode and cathode compartment either, a graphite electrode in the vessel volume of 5 x 10-2 m3. While in the cathode compartment is a mixture of electrolyte compounds K3Fe(CN)6 and a buffer solution. Microbes that have been cultured to be applied into the reactor Microbial Fuel Cell for reading ability in generating electrical energy by applying it to the electric system is a digital multimeter (microampermeter) with connecting cable along the 3.0 x 10-1 m. Electrons flow through a graphite covering 1,46 x 10-3 m2 to measure the large currents and voltage. A number of factors need to be controlled so that microbes can generate electrical energy efficiently, such as by measuring the degree of acidity and the DO in the anode compartment. From the results of MFC research, obtained by electrical efficiency of 53.90% for the comparison between receipts and without riboflavin as a mediator. While the addition of vegetable oil into the MFC system produces the optimum value of 189 μA. In addition, in this study shows that vegetable oils are added during inoculation of Saccharomyces cerevisiae, is proven to increase levels of riboflavin up to 42.19% after 35 hours incubation process."
Universitas Indonesia, 2011
S646
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>