Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41278 dokumen yang sesuai dengan query
cover
Faracitra Akuwalifah Kusumadewi
"Hydrogren recovery dari off-gas di hydrocracking unit dengan metode adsorpsi merupakan salah satu proses yang dapat meningkatkan efektivitas pada unit refinery. Tujuan dari penelitian ini adalah untuk membuat karbon aktif dari limbah ampas kopi yang akan digunakan sebagai adsroben pada proses hydrogen recovery. Limbah ampas kopi dipilih menjadi bahan baku bioadsorben karena memiliki kadar lignoselulosa yang baik serta mudah didapatkan di Indonesia. Metode aktivasi limbah ampas kopi adalah aktivasi kimia dengan ZnCl2 sebagai activating agent pada suhu 600°C.
Luas permukaan karbon aktif diuji dengan metode BET dan bilangan Iod, sementara morfologi dan kompisisinya akan diuji dengan metode SEM-EDX. Uji kapasitas adsorpsi karbon aktif dilakukan dengan campuran gas metana dan hidrogen untuk mengetahui kemampuan karbon aktif dalam proses recovery hidrogen. Uji adsorpsi dilakukan pada gas metana dan hidrogen murni pada suhu 20°C serta campuran CH4/H2 pada keadaan isotermal 10-30°C dengan tekanan 1 6 bar.
Penelitian ini menunjukkan bahwa karbon aktif berbahan dasar ampas kopi memiliki luas permukaan sebesar 728,07 m2/g dan bilangan iodin sebesar 2248 mg/g. Uji adsorpsi menunjukkan bahwa karbon aktif yang dihasilkan pada penelitian ini dapat mengadsorpsi gas CH4 murni 2,4 kali lebih banyak daripada gas H2 murni. Hasil ini menunjukkan bahwa karbon aktif yang dihasilkan pada penelitian ini dapat digunakan untuk pemisahan CH4/H2.

Hydrogen recovery from off gas of hydrocracking unit by adsorption is one of the process that could increase the efficiency process of refinery unit. The purpose of this research is to make coffee grounds based activated carbon bioadsorbent that will be used in hydrogen recovery proses. Coffee ground is selected as bioadsorbent because it has high lignocellulose content and easily obtained in Indonesia.The carbon was prepared by chemical activation using ZnCl2 at temperature 600°C.
The surface area of produced activated carbon was measured using BET and Iodine number, while its surface morfology and composition were characterized using SEM EDX. The adsorption capacity of activated carbon and its selectivity will be tested using hydrogen methane gas mixture adsorption to determine the ability of activated carbon in separating hydrogen from methane. The test was carried out on pure methane and hydrogen gas at 20oC and a mixture of CH4 H2 mole ratio 4 1 at 10°C, 20°C and 30°C and pressures from 1 to 6 bar.
The results of this study show that the activated carbon can be successfully produced having specific surface area of 728.07 m2 g and iodin number of 2248 mg g. The result shown that the adsorption of pure CH4 gas at the same pressure was 2.4 times greater than pure H2. The adsorption test indicates that the produced activated carbon might be used for hydrogen methane separation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sheila Nabila Putri
"Recovery hidrogen dari off gas unit hydrocracking dengan teknlogi adsorpsi dapat dilakukan untuk meningkatkan efisiensi proses pada kilang. Penelitian ini bertujuan untuk membuat karbon aktif dari cangkang kelapa sawit teraktivasi H3PO4 untuk digunakan sebagai adsorben. Karbon aktif yang dihasilkan mempunyai karakteristik luas permukaan BET 414,92 m2/g dan bilangan iodin 716 mg/g. Uji adsorpsi dilakukan pada gas methana dan hidrogen murni pada 20°C serta campuran CH4/H2 pada keadaan isotermal 10 - 30°C dengan tekanan 1 - 6 bar.
Pengukuran menggunakan teknik volumetrik. Uji adsorpsi menunjukkan bahwa gas CH4 murni paling banyak teradsorpsi diikuti campuran CH4 1,5 /H2 dan H2 murni. Pada adsorpsi isotermal CH4 8,5 /H2, gas teradsorpsi meningkat dengan peningkatan tekanan dan suhu yang lebih rendah dengan total mol adsorpsi tertinggi sebesar 0,225 mmol/g KA. Berdasarkan analisis GC-TCD, kandungan CH4 hingga 8,5 pada campuran seluruhnya teradsorpsi. Data hasil uji adsorpsi direpresentasikan dengan baik oleh model adsorpsi isotermal Langmuir.

Hydrogen recovery from off gas of hydrocracking unit by adsorption could be applied to increase the efficiency process of refinery unit. The objective of this study is to obtain palm shell based activated carbon that is activated by H3PO4 to be used as adsorbent. Produced activated carbon have BET surface area characteristic of 414,91 m2 g and iodine number of 716 mg g. Adsorption test is done for pure methane, and pure hydrogen at 20°C and CH4 H2 gas mixture at 10 ndash 30°C isothermal condition with pressure 1 ndash 6 bar.
Measurement were made using volumetric technique. The result of adsorption test shows adsorption of pure CH4 was highest followed by mixture gas of CH4 1,5 H2 with then pure H2. The adsorption of CH4 8,5 H2 is increasing at higher pressure and lower temperature with highest mol adsorption of 0,225 mmol g AC. Based on GC TCD analysis, methane composition up to 8,5 in gas mixture is all adsorbed to activated carbon. The trend of isothermal adsorption also fits the Langmuir model of isothermal adsorption
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67678
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melody Gita Mahardhika Oratmangun
"Recovery hidrogen merupakan salah satu proses krusial yang ada di kilang minyak, karena proses tersebut dapat membantu menurunkan biaya operasional proses pengolahan minyak bumi. Penelitian ini bertujuan untuk membuat karbon aktif dari bambu Betung yang diaktivasi oleh larutan H3PO4 dan K2CO3 untuk kemudian digunakan sebagai adsorben dalam proses recovery hidrogen. Masing-masing aktivasi kimia di dalam reaktor berlangsung selama 30 menit.
Karbon aktif yang didapat dari penelitian ini memiliki bilangan Iodin sebesar 916,4 mg/g dan luas permukaan BET sebesar 465,2 m2/g. Kandungan karbon pada karbon aktif dari bambu betung ini senilai 74,83. Karbon aktif digunakan untuk memisahkan gas hidrogen dan metana dari campuran keduanya pada suhu 10, 20, 30°C dengan variasi tekanan 1 ndash; 6 bar.
Hasil yang didapatkan dari uji adsorpsi isotermal memperlihatkan bahwa karbon aktif tersebut dapat mengadsorpsi gas campuran paling tinggi pada suhu 10°C dengan tekanan 6 bar, yaitu senilai 0,247 mmol/g. Metana memiliki kemampuan untuk diadsorpsi 2,2 kali lebih besar dibandingkan dengan hidrogen. Hasil dari penelitian ini juga memenuhi pemodelan adsorpsi isotermal Langmuir. Oleh karena itu, dapat disimpulkan bahwa karbon aktif yang dihasilkan dari penelitian ini dapat diaplikasikan dalam proses recovery hidrogen dari campuran gas hidrogen dan metana.

Hydrogen recovery from off gas of hydrocracking and hydrotreating unit is one of the crucial processes in an oil and gas refinery unit as this process helps in lowering the expenses for operations. This study aims to obtain activated carbon that is made from Betung bamboo which can be used as the adsorbent in this process. The activated agents used are H3PO4 and K2CO3, respectively. Each activation lasts for 30 minutes.
The results of the characterization test shows that the Iodine number of the activated carbon produced reaches 916.4 mg g with BET surface area of 465.2 m2 g. SEM EDX analysis shows that the carbon content is 74.83 . The activated carbon obtained is used to separate Hydrogen and Methane from its mixture at 10, 20 and 30°C with pressure variations of 1 ndash 6 bar.
The results indicate that the maximum number of moles adsorbed from CH4 21.5 H2 gas mixture is 0.247 mmol g, that has been carried out at 6 bar with temperature of 10°C. Methane has 2.2 times higher adsorption capacity than hydrogen, therefore, the Betung bamboo based activated carbon produced from this research can be applied as the adsorbent in the separation process of CH4 H2 mixture and it fits the Langmuir model.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nydia Amelia Madiadipura
"Pada penelitian ini, percobaan telah dilakukan untuk memanfaatkan bahan sisa-sisa biomasa secara efisien untuk mengambil kembali hidrogen dari campuran gas CH4 -; H2 yang banyak ditemukan pada unit Hydrocracking di Kilang Minyak. Bagian dari percobaan ini adalah pembuatan karbon aktif berbasis tempurung kelapa yang diproses melalui aktivasi kimia dan fisika dengan menggunakan ZnCl2 25 dan dilanjutkan dengan aktivasi pada 800 C dengan aliran N2 selama satu jam untuk untuk memperbesar luas permukaannya. Studi eksperimental mendetail telah dilakukan untuk adsorpsi metana dan hidrogen murni pada 20°C, serta campuran gas CH4 -; H2 pada 10, 20 dan 30°C; setiap kondisi isotermal diuji kapasitas adsorpsinya pada tekanan 1 -; 6 bar. Pengukuran dilakukan dengan teknik volumetric dan analisis gas kromatografi.
Hasil luas permukaan BET dan bilangan iod dari karbon aktif ini ialah 432,26 m2/g dan 644,80 mg/g. Adsorpsi tertinggi didapatkan pada metana murni diikuti oleh campuran gas CH4 -; H2 dengan rasio 1: 9 dan hidrogen murni. Untuk campuran gas, jumlah mol yang teradsorpsi meningkat dengan meningkatnya tekanan pada setiap isotermal; dimana pada suhu yang lebih tinggi kapasitas adsorpsinya menurun. Secara umum, seluruh metana yang terdapat pada gas campuran dapat terserap, namun pada kondisi tertentu terdapat metana yang tidak teradsorp oleh karbon aktif. Percobaan ini mengikuti model Langmuir dari adsorpsi isotermal.

In this study, attempts have been made to utilize biomass residue in an efficient way to recover hydrogen from CH4 - H2 gas mixture, which is widely found in Hydrocracking Units in Oil Refineries. Part of this attempt is to produce an activated carbon based on coconut shell, which is processed through chemical and physical activation using 25 ZnCl2 followed by activation at 800 C with N2 flow for an hour to increase its surface area. A detailed experimental study has been made for the adsorption of pure methane and hydrogen at 20°C, as well as CH4 - H2 mixture at 10, 20 and 30°C each isotherm condition undergoes a variety of pressure ranging from 1 - 6 bar. Measurements were made using volumetric technique and gas chromatograph analysis.
The resulted BET surface area and iodine number are 432.26 m2 g and 644.80 mg g, respectively. The highest adsorption is obtained for pure methane followed by CH4 - H2 mixture with 1 9 ratio and pure H2. For gas mixture, the total adsorption increases with the increase of pressure in each isotherm in which the higher temperature has lower adsorption ability. Overall, all methane in the gas mixture is adsorbed, however at certain condition a small amount of methane can be detected using Gas Chromatograph analysis. The trend of this experiment fits the Langmuir model of isothermal adsorption.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67570
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Prasetyo
"Penelitian ini membuat karbon aktif dari limbah kulit kopi karena sampai saat ini pemanfaatan limbah kulit kopi belum maksimum. Aktivasi yang digunakan adalah aktivasi kimia menggunakan Kalium Karbonat karena berdasarkan penelitian-penelitian sebelumnya, luas permukaan yang dihasilkan dapat bersaing dengan activating agent lain. Variasi yang dilakukan adalah variasi rasio massa activating agent/massa bahan baku 1/1, 3/2, dan 2/1 dan variasi suhu 600°C, 700°C, dan 800°C. Luas permukaan diperoleh dari konversi bilangan iod dengan hasil tertinggi adalah 891 m2/gram yang didapatkan dari suhu aktivasi 800°C dan rasio impregnasi 3/2. Sebagai pembanding, luas permukaan yang diperoleh dari aktivasi fisika menggunakan CO2 adalah 176 m2/gram.

This research aims to produce activated carbon from coffee shell waste due to utilization of coffee shell waste that far from maximum. Activation that will be used in this research is chemical activation using Potassium Carbonate because in previous researches show that surface area obtained by this activating agent can compete with other activating agent. The variation in this research is impregnation ratio and temperature. The impregnation ratio is 1/1, 3/2, and 2/1 while the temperature variation is 600°C, 700°C, and 800°C. The surface area is obtained by conversion of iod number with the highest result is 891 m2/gram which produced at temperature 800°C and impregnation ratio 3/2. Physical activation using CO2 is done for comparison and obtains surface area 176 m2/gram."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54822
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadira Raihannisa Aurora
"Optimasi adalah disiplin ilmu yang digunakan untuk mencari nilai optimal dalam suatu fungsi. Ilmu ini banyak digunakan untuk mengurangi biaya dan waktu dalam meneliti suatu eksperimen agar diperoleh hasil yang terbaik. Penelitian ini bertujuan untuk memperoleh kondisi proses optimal untuk memaksimalkan luas permukaan dan yield. Bahan baku yang digunakan adalah ampas kopi, tempurung kelapa, dan polyethylene terephthalate (PET). Metode aktivasi yang digunakan adalah aktivasi fisika-kimia dengan senyawa aktivasi KOH, NaOH, H3PO4, dan K2CO3. Penentuan kondisi optimal dilakukan dengan metode respons permukaan (RSM) tipe Box-Behnken Design (BBD). Model yang diperoleh dianalisis menggunakan uji ANOVA dan uji residual. Hasil RSM berupa plot kontur dan permukaan yang digunakan untuk megetahui wilayah kondisi optimum serta analisa pengaruh faktor terhadap respons. Nilai kondisi optimum ditentukan menggunakan Response Optimizer dan diperoleh hasil bahwa sintesis karbon aktif dari ampas kopi dengan senyawa KOH, NaOH, H3PO4, dan K2CO3 terjadi ketika rasio impregnasi 1,00-1,37, suhu aktivasi 600-800°C, dan waktu aktivasi 60-120 menit. Sintesis optimal dari tempurung kelapa terjadi ketika rasio impregnasi 1,00-3,00, suhu aktivasi 647-808°C, dan waktu aktivasi 70-120 menit. Sintesis optimal dari PET terjadi ketika rasio impregnasi 1,00-2,80, suhu aktivasi 700-800°C, dan waktu aktivasi 109-120 menit.

Optimization is a discipline to obtain the best value of a function. This study is used to minimize research cost and time. This research is done to achieve the optimum condition of process conditions for maximum surface area and yield of activated carbon. The precursors used in this research are waste coffee, coconut shell, and polyethylene terephthalate (PET). The type of activation method used is physical-chemical activation with KOH, NaOH, H3PO4, and K2CO3 as activating agents. To determine the optimum condition, this research use Response Surface Method (RSM) with Box-Behnken Design (BBD). The resulting model is tested using ANOVA analysis and the residual test. When the model passes the test, plot contours and surfaces achieved can be analyzed to determine the optimum area and the behavior of factors and responses. Response Optimizer option is used to determine the optimum value. Results show that synthesis of activated carbon using waste coffee and activating agents KOH, NaOH, H3PO4, and K2CO3 are optimized when impregnation ratio is 1.00-1.37, temperature is 600-800°C, and activation time 60-120 minutes. Synthesis from coconut shell is optimized when impregnation ratio is 1.00-3.00, temperature is 647-808°C, and activation time 70-120 minutes. Synthesis from PET is optimized when impregnation ratio is 1.00-2.80, temperature is 700-800°C, and activation time 109-120 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Maula Arif
"Spent coffee grounds have the potential to be a very important source of bioactive compounds, such as phenolic compounds. However, extraction of phenolic compounds has generally been done using organic solvents, which are not environmentally friendly. Therefore, it is proposed that an alternative kind of solvent is used in the extraction process, which in this case is deep eutectic solvents (DES). They are chosen due to their simple preparation, low toxicity, and low flammability. This research used DES that are made up of betaine as the hydrogen bond acceptor (HBA) combined with 1,2-butanediol, 1,3-butanediol, and lactic acid as the hydrogen bond donor (HBD). Optimization of the extraction process was done by varying the extraction temperature (40, 50, 60 ° C), type of HBD used (poly-alcohols and acids), as well as the water content in the DES (0, 25, 50% v/v). The total phenolic content of each spent coffee ground sample was measured as an equivalent to gallic acid concentration. The Box-Behnken method was used as a tool to design the experiment and find the optimal extraction operating condition. The optimal extraction condition for the DES using 1,2-Butanediol as the HBD is a temperature of 59.58 ° C, a solid liquid ratio of 0.081 g/g, and a water content of 47.60% v/v, which results in a phenolic content of 58.65 mg GAE/g SCG. for the DES using 1,3-Butanediol as the HBD, the optimal condition is a temperature of 59.76 ° C, a solid liquid ratio of 0.071 g/g, and a water content of 24.05% v/v, which results in a phenolic content of 55.41 mg GAE / g SCG. Finally, the DES using lactic acid as the HBD is optimal when the temperature is 59.62 ° C, has a solid liquid ratio of 0.077 g/g, and a water content of 49.55% v/v, which results in a phenolic content of 54.96 mg GAE/g SCG. Furthermore, experiments concerning the physicochemical properties of the DES used have been done in order to provide additional data and context to the extraction results of the optimization process. Lastly, a direct correlation has been found regarding spent coffee ground's antioxidant activity with its phenolic content.

Ampas kopi bekas memiliki potensi untuk menjadi sumber senyawa bioaktif yang sangat penting, seperti senyawa fenolik. Namun, ekstraksi senyawa fenolik umumnya telah dilakukan menggunakan pelarut organik, yang tidak ramah lingkungan. Oleh karena itu, diusulkan bahwa jenis pelarut alternatif digunakan dalam proses ekstraksi, yang dalam hal ini pelarut eutektik dalam (DES). Mereka dipilih karena persiapannya yang sederhana, toksisitas rendah, dan mudah terbakar. Penelitian ini menggunakan DES yang terdiri dari betaine sebagai akseptor ikatan hidrogen (HBA) yang dikombinasikan dengan 1,2-butanadiol, 1,3-butanediol, dan asam laktat sebagai donor ikatan hidrogen (HBD). Optimalisasi proses ekstraksi dilakukan dengan memvariasikan suhu ekstraksi (40, 50, 60 ° C), jenis HBD yang digunakan (poli-alkohol dan asam), serta kadar air dalam DES (0, 25, 50% v/v). Total konten fenolik dari masing-masing sampel tanah kopi yang dihabiskan diukur sebagai setara dengan konsentrasi asam galat. Metode Box-Behnken digunakan sebagai alat untuk merancang percobaan dan menemukan kondisi operasi ekstraksi yang optimal. Kondisi ekstraksi optimal untuk DES menggunakan 1,2-Butanediol sebagai HBD adalah suhu 59,58 ° C, rasio cairan padat 0,081 g/g, dan kadar air 47,60% v/v, yang menghasilkan fenolik isi 58,65 mg GAE/g SCG. untuk DES menggunakan 1,3-Butanediol sebagai HBD, kondisi optimal adalah suhu 59,76 ° C, rasio cairan padat 0,071 g/g, dan kadar air 24,05% v/v, yang menghasilkan fenolik isi 55,41 mg GAE/g SCG. Akhirnya, DES menggunakan asam laktat sebagai HBD optimal ketika suhu 59,62 ° C, memiliki rasio cairan padat 0,077 g/g, dan kadar air 49,55% v/v, yang menghasilkan kandungan fenolik 54,96 mg GAE/g SCG. Selain itu, percobaan mengenai sifat fisikokimia DES yang digunakan telah dilakukan untuk memberikan data tambahan dan konteks untuk hasil ekstraksi dari proses optimasi. Terakhir, korelasi langsung telah ditemukan mengenai aktivitas antioksidan tanah kopi yang dihabiskan dengan kandungan fenoliknya.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerald Mayo Leopold
"Saat ini energi dianggap sebagai kebutuhan utama di dunia. Sayangnya, energi dari bahan bakar fosil menghasilkan karbon dioksida dalam jumlah besar sehingga meningkatkan efek rumah kaca di dunia ini. Untuk mengatasi masalah ini, banyak negara berkembang telah mengkonversi bahan bakar fosil ke gas alam. Selanjutnya, gas alam masih mengandung zat pengotor, sehingga pemurnian gas alam dari zat pengotor sangat penting.
Penelitian ini akan membangun simulasi pemurnian yang dicapai dengan dua simulasi yang berbeda. Pada simulasi pertama komponen akan terdiri dari metana, nitrogen dan karbon dioksida dengan persentase komposisi 80% metana dan 10% dari karbon dioksida dan nitrogen masing-masing. Simulasi kedua akan terjadi tanpa nitrogen dan dengan persentase 80% metana dan 20% dari karbon dioksida. Hasil penelitian menunjukkan bahwa karbon dioksida dapat terserap awal 50%. Di sisi lain metana tidak dapat dimurnikan dengan baik ketika ada nitrogen ada dalam proses adsorpsi.

Nowadays energy is considered as primary requirement in the world. Unfortunately, the energy from fossil fuel emits large number of carbon dioxide increasing the greenhouse effect in this world. In order to overcome this problem, many develop countries are converting fossil fuel into natural gas. Furthermore, natural gas is still occupied with impurities, therefore purification of Natural gas from impurities are very important.
This study observed the purification simulation process which attained with two different run. The first run components were consists of methane, nitrogen and carbon dioxide with percentage composition 80% of methane and 10% of carbon dioxide and 10 % nitrogen respectively. The second run occurred without nitrogen and with percentage 80% of methane and 20% of carbon dioxide. Result show that carbon dioxide can be adsorbed nearly 50 %. On the other hand methane cannot be well purified when there is nitrogen exist in the adsorption process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46592
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anyi Salim
"Pencemaran udara dalam ruang (indoor air polution) dapat memberikan dampak yang berbahaya bagi kesehatan manusia. Polutan utama dalam indoor air polution adalah gas formaldehida. Adsorpsi dengan karbon aktif efektif dapat digunakan untuk mengurangi kadar formaldehida dalam ruangan. Pada penelitian ini dilakukan pembuatan karbon aktif dengan menggunakan bambu petung Indonesia untuk dikarbonasi dan selanjutnya diaktivasi kimia dengan KOH. Hasil karbon aktif lalu ditempelkan dengan partikel nano Ag.
Dari hasil uji luas permukaan untuk karbon dengan aktivasi fisika (KAF) diperoleh 205 m2/g dan aktivasi kimia sebesar (KAK) 698,8 m2/g. Selanjutnya Penambahan partikel nano Ag pada karbon aktif juga meningkatkan luas permukaan sebesar 12,3% yaitu pada karbon aktif dengan aktivasi kimia yang telah ditambahkan partikel nano Ag (KAK-Ag) menjadi 784,5 m2/g.
Uji adsorpsi menunjukkan bahwa pada konsentrasi kesetimbangan sekitar 20 ppm, karbon aktif dengan aktivasi kimia dan penambahan partikel nano Ag (KAK-Ag) mengadsorpsi sebesar 0,0335 mg/g, karbon aktif dengan aktivasi fisika dan penambahan partikel nano Ag (KAF-Ag) mengadsorpsi sebesar 0,0254 mg/g dan karbon aktif dengan aktivasi fisika (KAF) mengadsorpsi sebesar 0,0181 mg/g sehingga adanya penambahan nano partikel Ag meningkatkan kapasitas adsorpsi sebesar 40%.

Indoor air polution can give harmful effects to human health. The main pollutans in indoor air pollution is formaldehyde gas. Adsorption by activated carbon can be effectively used to reduce indoor formaldehyde levels. In this research, the manufacture of activated carbon using bamboo petung Indonesia to carbonation and then chemically activated with KOH. The results of the activated carbon then added with Ag nano particles.
From the test results the surface area for activated carbon by activation of physics (KAF) obtained 205 m2/g and chemical activation (KAK) of 698,8 m2/g. Further addition of Ag nano particles on activated carbon also increases the surface area 12,3% for activated carbon with chemical activation added Ag nano particles (KAK-Ag) to 784,5 m2/g.
Adsorption test showed that the equilibrium concentration of about 20 ppm, Activated Carbon with chemical activation and addition of nano Ag particle (KAK-Ag) adsorbs at 0,0335 mg/g, Activated Carbon with physical activation and addition of nano Ag particle (KAF-Ag) adsorbs at 0,0254 mg/g and Activated Carbon with Physical activation (KAF) adsorbs at 0,0181 mg/g, so with addition of nano Ag particle can increases adsorption capacity by 40%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43917
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Anggriany
"Penelitian ini dilakukan untuk mengetahui pengaruh karbon aktif berbahan dasar tempurung kelapa sawit dengan bahan pengaktif ZnCl2 terhadap penurunan konsentrasi gas CO serta penjernihan asap kebakaran. Proses aktivasi dilakukan secara kimia dan fisika. Karbonisasi dilakukan pada suhu 400oC selama 2 jam lalu dilanjutkan dengan aktivasi kimia dengan ZnCl2 dengan konsentrasi 25%. Aktivasi fisika dilakukan dengan mengalirkan gas N2 selama 1 jam pada suhu 850 ºC dan dilanjutkan dengan mengaliri gas CO2 selama 1 jam pada suhu 850 ºC.
Penelitian ini menghasilkan karbon aktif yang memenuhi Standar Industri Indonesia dengan luas permukaan sebesar 743 m2/gram, kadar air 14,5%, dan kadar abu total 9,0%. Selain itu karbon aktif yang dihasilkan juga dapat diaplikasikan untuk mengadsorpsi gas CO dari hasil kebakaran dengan persen adsorpsi gas CO sebesar 11,3% pada ukuran partikel 50-37 μm.

This research was conducted to determine the effect of activated carbon made from coconut palm with ZnCl2 as activating agent to decrease the concentration of CO gas and fire fumes purification. The activation process is done chemically and physically. Carbonization was carried out at 400oC for 2 hours and then followed by chemical activation with ZnCl2 at concentrations of 25%. Physical activation is done by flowing N2 gas for 1 hour at 850ºC and followed by flowing CO2 gas for 1 hour at 850ºC.
This research produces activated carbon which follows Indonesian Industry Standard with surface area 743 m2/gram, water content 14.5%, and total ash content 9.0%. The activated carbon produced can also be applied to adsorb CO gas from the fire with the percent adsorption of CO gas by 11.3% in the particle size of 50-37 μm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46908
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>