Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 109986 dokumen yang sesuai dengan query
cover
Bella Ilaiyah Rizki
"Listrik merupakan salah satu kebutuhan yang paling penting bagi kehidupan sehari-hari. Mengingat begitu besar kebutuhan beban listrik yang terus meningkat seiring dengan berjalannya waktu, oleh karena itu diperlukan peramalan beban listrik untuk menjaga kestabilan sistem tenaga listrik. Dalam skripsi ini, data historis digunakan sebagai data acuan dan peramalan dilakukan menggunakan metode koefisien beban untuk meramalkan beban puncak mingguan dari tahun 2017 sampai 2020 pada sistem interkoneksi Jawa-Bali.
Hasil analisa menunjukan nilai beban puncak untuk empat tahun terakhir tahun terjadi pada pekan ke 42 yaitu pada tahun 2017 sebesar 26.173 MW, tahun 2018 sebesar 25.630 MW, tahun 2019 sebesar 26.219 MW, dan tahun 2020 sebesar 26.822 MW. Di sisi lain persentase kesalahan peramalan beban puncak tertinggi pada tahun 2017 sebesar 12,717 yang terjadi pada hari raya idul fitri. Tingkat akurasi pada metode koefisien beban dapat dikatakan cukup baik karena rata-rata persentase kesalahan pada tahun 2017 bernilai rendah yaitu sebesar 1,66.

Electricity is one of the most important needs for everyday life. Given the huge demand for electrical loads that increase continously over time, therefore the electrical load forecasting is required to maintain the stability of the electrical system. In this paper, historical data used as the reference and the load coefficient method is used to forecast weekly peak load from 2017 to 2020 on Jawa Bali system interconnection.
The result of the analysis shows the peak load value for the last four years occurred in the 42nd week. In 2017 the peak load value is 26,173 MW, in 2018 the peak load value is 25,630 MW, the peak load value in 2019 is 26,219 MW, and the peak load value in 2020 is 26,822 MW. On the other hand, the highest error percentage of peak load in the year 2017 amounted to 12.29 which occurred on Idul Fitri holidays. The accuracy of the load coefficient method can be quite good because the average error percentage in 2017 is at the low catagorized on 1.66.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauziah Putri Oktaviani
"Skripsi ini melakukan peramalan beban persetengahjam untuk tanggal 25 Desember tahun 2017 dan 2018 menggunakan metode koefisien beban dengan data historis tiga dan empat tahun sebelumnya sebagai acuan. Peramalan beban untuk tanggal 25 Desember 2018 bertujuan untuk mengetahui profil singkat beban persetengahjam pada tanggal tersebut. Dengan membandingkan data peramalan dengan data realisasi, penelitian ini menyatakan bahwa metode koefisien beban dianggap cukup akurat dalam melakukan peramalan pada tanggal 25 Desember 2017; peramalan beban persetengahjam dengan metode koefisien beban memperoleh nilai persentase galat APE sebesar 2,17 ; beban puncak harian pada tanggal 25 Desember 2018 akan terjadi pada pukul 18.30 dengan nilai beban 21.068 MW, sedangkan beban terendahnya akan terjadi pada pukul 07.00 dengan nilai beban 16.364,81 MW.

The focus of this study is to do the electrical forecasting every half hour on December 25th 2017 and 2018 using load coefficient method reference to the historical data. Load forecasting on December 25th, 2018 aims to find out the simple profile of load every half hour on the day. By comparing the forecasting data we have with the realization one, this study indicate that the load coefficient method is considered to be quite accurate for load forecasting on December 25th 2017 peak loads occur half an hour earlier than the forcasting load forecasting every half an hour by load coefficient method obtains absolute percentage error APE of 2,17 daily peak load on December 25th, 2018 will occur at 06.30 PM with load value of 21.068MW, while the lowest load will occur at 07.00 AM with load value of 16.364,81 MW.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Pandu Rizkhi Prasetyo
"Pertumbuhan ekonomi dan populasi menyebabkan peningkatan konsumsi energi listrik. Oleh karena itu, konsumsi energi dan penyediaan daya di masa mendatang perlu diprakirakan sejak dini. Terdapat beberapa metode yang telah diterapkan, namun dalam hal ini penulis melakukan peramalan kebutuhan energi menggunakan metode Neural Network (NN) berdasarkan data-data meliputi rasio elektrifikasi, energi terjual pelanggan, PDRB (Produk Domestik Regional Bruto) serta jumlah penduduk pada wilayah Jamali (Jawa Madura Bali). Adapun simulasi NN dilakukan pada software Matlab. Walaupun demikian, peramalan kebutuhan energi kali ini hanya dapat dilakukan pada waktu yang terbatas, karena tingkat kepercayaan ramalan menurun mengikuti kenaikan tahun dimana tingkat kepercayaan maksimum R2 = 0,9852 diperoleh pada peramalan kebutuhan energi selama 6 tahun ke depan.

Economic and population growth led to increased consumption of electrical energy. Therefore, energy consumption and power supply in the future need to be predicted early on. There are several methods that can be applied, but this study will use artificial Neural Network (ANN) for demand forecasting based on data that consist of electrification ratio, energy-sold customers, GDP (Gross Domestic Product) and the number of residents in the area of Jamali. The simulation is done by using Matlab. However, the peak demand forecasting can only be done in a limited time, because the confidence level forecast to decline following the year in which the increase in the maximum confidence level R2 = 0.9852 is obtained on demand forecasting for the next 6 years."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45371
UI - Tesis Membership  Universitas Indonesia Library
cover
Barqi Azmi
"Sebagai dasar dalam perencanaan operasi, dibutuhkan prakiraan yang tepat untuk mengetahui kebutuhan tenaga listrik dalam periode waktu tertentu. Prakiraan biasanya berupa prakiraan beban load forecasting meliputi beban puncak MW, dan prakiraan kebutuhan energi listrik MWh. Dalam melakukan prakiraan telah berkembang berbagai macam metode, salah satunya metode koefisien yang digunakan oleh PT PLN Persero- P2B untuk memprakirakan beban harian dan mingguan dengan data realisasi 3 tahun sebagai pengembangan dari metode autoregresi. Metode prakiraan ini merupakan metode yang relatif akurat dengan tingkat kesalahan terhadap nilai-nilai beban aktual berkisar 5 - 10.

A basis for operations planning, precise forecasts are needed to determine the demand for electricity over a period of time. Forecasts usually includes load forecasting including peak load MW, and forecasts for electrical energy MWh. In doing the work has evolved a variety of methods, one of which is the coefficient method used by PT PLN Persero P2B to forecast daily and weekly loads with 3 years realization data as the development of the autoregression method. This forecasting method is a relatively accurate method with an error rate against actual load values ranging from 5 10."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Purba, Arif Just Novan
"Daerah Khusus Ibukota Jakarta adalah kota terbesar jumlah penduduknya demikian juga dengan beban listriknya merupakan beban terbesar di Indonesia. Pada momen-momen tertentu yang bersifat monumental atau historikal beban biasanya naik secara signifikan. Akan tetapi pada momen Idul Fitri yang merupakan hari raya keagamaan umat Islam, beban listrik di Area Pengaturan Beban (APB) 1 yang notabene mayoritas penduduk Ibukota Jakarta beban justru turun. Pada tahun 2013, 2014 dan 2015 beban menurun berturut-turut sebesar 69,174%, 87,549% dan 70,195% dari rata-rata normalnya. Perubahan beban tahun 2016 dapat diprakirakan berdasarkan data historis tahun-tahun sebelumnya. Metode prakiraan yang digunakan adalah metode koefisien daya. Hasil perhitungan diprakirakan beban pada Idul Fitri turun sebesar 75,679% dari rata-rata prakiraan beban mingguan secara normal. Hal itu terjadi pada minggu ke-27 tahun 2016.

Special Capital Region of Jakarta (Indonesian: Daerah Khusus Ibu Kota Jakarta) is the largest city with a population as well as electrical load is the biggest load in Indonesia. At certain moments that are monumental or historical event usually increases significantly. However, at the moment of Idul Fitri as a Muslim religious holiday, the electrical load in Area Pengatur Beban (APB) 1 is decreases, not like the other special event. In 2013, 2014 and 2015 respectively decreased load of 69.174%, 87.549% and 70.195% of the normal days average. The Load in Idul Fitri 2016 can be predicted based on historical data of previous years. The Forecasting method used is the power coefficient. The results of calculations predicted in Idul Fitri load decreased by 75.679% of the average normal weekly load. Actually, it happened on the 27th week of 2016.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65540
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibrahim Ali Marwan
"Dalam perencanaan operasi harian, diperlukan perkiraan beban beberapa waktu kedepan sebagai dasar penentuan strategi pembangkit. Saat ini belum dibentuk suatu model matematis yang dapat digunakan untuk melakukan perkiraan beban listrik secara akurat. Untuk itu pada penelitian kali ini akan disusun model matematis yang dapat melakukan peramalan beban secara akurat. Metode yang digunakan pada penelitian ini untuk melakukan peramalan beban listrik di Jawa-Bali adalah dengan menggunakan Feed Forward Neural Networks dan Bayesian Neural Networks. Hasil dari pengolahan data yang telah dilakukan diperoleh hasil bahwa peramalan dengan Feed Forward Neural Networks memberikan hasil peramalan yang lebih baik untuk rentang waktu 1 minggu kedepan, sedangkan untuk melakukan ramalan 1 ? 2 hari kedepan Bayesian Neural Networks memberikan hasil yang lebih akurat.

In the daily operations planning, required load estimates as a basis for determining the generating strategy. Currently a mathematical model that can be used to perform accurately estimate the electric load has not been established. Therefore in the present study will be developed a mathematical model that can perform load forecasting accurately. The method used in this study to to forecast electricity load in Java-Bali is by using Feed Forward Neural Networks and Bayesian Neural Networks. The results shows forecasting with Feed Forward Neural Networks provide better forecasting results for a span of 1 week ahead, while to do a forecast 1-2 days ahead of Bayesian Neural Networks provide more accurate results.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41691
UI - Tesis Membership  Universitas Indonesia Library
cover
Arief Heru Kuncoro
"Pola beban sistem tenaga listrik yaitu pola permintaan beban puncak dan kurva lama beban (KLB) sangat berpengaruh dalam perencanaan pengembangan sistem pembangkitan jangka panjang. Pola beban tersebut mempengaruhi: nilai total biaya kumulanf pengembangan sxstem koniigurasn optnmum vanabel kandidat pembangkit, total tambahan kapasitas pembangkit terpasang, Jumlah energi yang diproduksi dan keandalan sistem (indeks LOLP (Loss Of Load Probability) & ENS (Energy Not Served)). Beberapa model telah digunakan untuk peramalan permintaan beban puncak dan untuk merepresentasikan KLB. KLB merupakan parameter yang sangat penting untuk analisis sistem ketenagalistrikan seperti estimasi biaya operasi sistem pembangkitan prediksi jumlah energi yang diproduksi dan untuk perhitungan tingkat keandalan. Dalam disertasi ini telah dikembangkan model peramalan beban puncak jangka panjang dan model KLB dengan menggunakan metode Jaringan Syaraf Tiruan (JST). Model yang dikembangkan mampu melakukan komputasi secara paralel melalul pembelajaran dari pola pola yang diajarkan sehingga mampu menemukan hubungan non-linear antara beban dan faktor-faktor ekonomi populasi, konsumsi energi listrik dan faktor faktor Iainnya serta dapat melakukan penyesuaian terhadap perubahan-perubahan yang terjadi. Model tersebut diaplikasikan pada sistem ketenagalistrikan Jawa-Madura-Bali (Jamali) dan hasil output peramalan beban puncak dan KLB nya digunakan sebagai masukan dalam optimasi perencanaan pengembangan sistem pembangkltan dengan program WASP (Wien Automatic System Planning). Selanjutnya dilakukan analisis keandalan sistem berdasarkan hasil optimasi. Untuk mengetahui keakuratan model yang dikembangkan maka output hasil dan model yang dikembangkan dibandingkan dengan model lain. Hasil ramalan beban puncak pada tahun 2025 dengan metode JST tidak berbeda jauh dengan model ekonometrik Simple E yang digunakan untuk Rencana Umum Ketenagalistrikan Nasional (Simple E-RUKN) yaitu masing-masing sebesar 57.030 MW dan 59.107 MW (perbedaannya sekitar 3,58%). Berdasarkan metode JST, laju pertumbuhan beban tahunan rata-rata sekitar 7,1 % selama periode tahun studi 2006-2025, sementara itu menurut Simple E-RUKN laju pertumbuhan diperkirakan sekitar 7,3%per tahun. Representasi pola model KLB-RJST yang dikembangkan lebih mendekati pola KLB-Aktual, dibandingkan dengan pola model KLB-Synder. Berdasarkan hasil analisis keandalan dalam optimasi perencanaan pengembangan sistem pembangkitan diperoleh kesimpulan bahwa perbedaan hasil perhitungan keandalan antara model KLB-JST dibandingkan pola KLB-Aktul mempunyai perbedaan yang relatif kecil (sekitar 0,94% untuk perbedaan LOLP dan 4,44% untuk perbedaan ENS). Untuk model proyeksi KLB berdasarkan metode JST, hasilnya cukup bagus.

Load pattern on the electricity system (i. e. demand pattern of peak load and load duration curve (LDC)) has an effect on the long term generating system expansion planning The load pattern affects of' cumulative total cost value of system development, optimum configuration of generating candidate variable, total addition of generating installed capacity amount of energy produced and system realibility (index of LOLP (Loss Of Load Probability) & ENS (Energy Not Served)) Several models have been used to forecast peak load demand and to express LDC An LDC is one of the most important parameters to analyze the electric power systems. It is used in estimating the operating cost of a power system predicting the amount of energy delivered by each unit, and calculating reliability measures. In this dissertation an intelligence model to forecast long-load and to express LDC using Artificial Neural Networks (ANN) method has been developed The model has ability to conduct parallel computing through training from taught patterns so that it is able to find non-linear relations between load economic thetors population electric energy consumption and other factors. The model can also conduct adjustment in response to any changes that happenes. The model is applied on the Jawa Madura Bali (Jamali) electricity system and the output result of the forecasted peak load and its LDC are used as input on the optimazation of expansion planning for electrical generating system using WASP (Wien Automatic System Planning) program. Hercinafter the system reliability is analyzed based on the optimization result. The developed model output is compared to other model output to verify the accuracy. The result of the forecasted peak load in 2025 by ANN method does not differ far from that of Simple E model used National Electricity General Planning (Simple E-NEGP) of which 57.030 MW and 59.107 MW respectively(its difference about 3,58%) Based in the ANN model, mean annual load growth rate is about 7,1% during study period of 2006-2025, meanwhile according to Simple E-NEGP, the growth rate is estimated about 7,3 % per year. The develop LDC model based on ANN approximates the actual-LDC, if compared to LDC model based on the Synder. Based on the reliability analysis on the optimization of generating system expansion planning, the reliability calculation result by LDC-ANN model is almost similar to LDC-Actual model (differs about 0,94% or LOLP and about 4,44% for ENS). Meanwhile for LDC projection based on ANN, the result is fine."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2008
D1210
UI - Disertasi Open  Universitas Indonesia Library
cover
Eri Nurcahyanto
"Manajemen usaha penyediaan tenaga listrik merupakan hal yang kompleks. Salah satu hal yang penting dalam manajemen penyediaan tenaga listrik, khususnya dalam perencanaan adalah peramalan tenaga listrik di masa yang akan datang. Peramalan (forecasting) adalah suatu kegiatan atau usaha untuk memprediksi kondisi di masa yang akan datang dengan bantuan model untuk merepresentasikannya. Dalam membuat peramalan, keakuratan merupakan kriteria utama dalam menentukan metode peramalan.
Dalam penelitian ini metode algoritma genetik digunakan untuk membuat peramalan beban tenaga listrik. Algoritma Genetik adalah algoritma pencarian yang meniru mekanisme evolusi dan genetik alam. Dalam proses peramalan, dilakukan optimasi parameter-parameter model dengan meminimalkan nilai mean square error (mse).
Model peramalan yang dikembangkan dengan algoritma genetik dapat mendekati model sebenarnya. Parameter optimal model peramalan jangka panjang adalah A= 1.558, B1= 0.642, B2= 1.188, B3= -0.437, B4= -0.378, B5= -0.484, dan B6= 0.848, sedangkan untuk jangka menengah adalah adalah α= 0.6383 ,β=0, dan γ=0.8289. Laju pertumbuhan beban rata-rata hasil ramalan jangka panjang tahun 2008-2017 sekitar 6.9%. Peramalan beban jangka menengah memberikan hasil yang lebh baik jika dibandingkan dengan peramalan dari PLN P3B Jawa-Bali dengan jumlah selisih eror sebesar 0.44%.

Managing electricity energy supply is a complex task. The most important part of electricity supply management, particularly in utility planning is forecasting of the future electricity load. Forecasting is a process to predict future conditions usually achieved by constructing models on relative information and some assumptions. In making a electricity forecasting, accuracy is the primary criteria in selecting forecasting methods.
In this research, a genetic algorithm approach is proposed to build electricity load forecasting. Genetic algorithms are global search methods that mimic the methapor of natural evolution and genetic. Parameter optimization process have done by minimize mean square error (mse).
Load forecasting model using genetic algorithm gives model which is almost the same with actual data. Optimal parameters for long term model are: A= 1.558, B1= 0.642, B2= 1.188, B3= -0.437, B4= -0.378, B5= -0.484, dan B6= 0.848, for medium term model are: α= 0.6383 ,β=0, dan γ=0.8289. Annual growth rate for 2008-2017 using genetic algorithm model is about 6.9%. Medium term forecasting using genetic algorithm gives better result than PLN P3B Java-Bali forecasting with sum error difference about 0.44%.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26139
UI - Tesis Open  Universitas Indonesia Library
cover
Trisna Yuniarti
"Penelitian tesis ini mengusulkan metode data mining untuk peramalan beban listrik jangka pendek dengan menggunakan kombinasi wavelet transform dan algoritma group method of data handling (WGMDH). Wavelet transform digunakan untuk mendekomposisi dan menganalisis sinyal beban listrik yang memiliki tren dan berfungsi sebagai proses penyaringan untuk meningkatkan kualitas data sebelum dilakukan peramalan menggunakan GMDH. Metode diuji pada data beban listrik yang terdapat pada sistem ketenagalistrikan Sumatera. Kinerja metode yang diusulkan dibandingkan dengan metode GMDH tanpa kombinasi wavelet dan metode koefisien. Metode yang diusulkan dapat memperbaiki akurasi peramalan beban listrik jangka pendek dibandingkan dengan model GMDH tanpa wavelet dan metode koefisien, yaitu menghasilkan MAPE lebih kecil dari 2%.

This thesis proposes a method of data mining for short-term load forecasting using a combination of wavelet transform and group methods of data handling (WGMDH). The wavelet transform is used to decompose, analyze and filter the signals trend of the electrical load to generate electricity load data into a higher quality before forecasting using GMDH. The proposed method is tested on the datasets of the power system of Sumatera. The performance of the proposed method compared with the GMDH method without the combination of wavelet transform and coefficient method. The proposed method can improve the accuracy in short-term load forecasting rather than GMDH without wavelet and coefficient method, the MAPE result is less than 2%."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45725
UI - Tesis Membership  Universitas Indonesia Library
cover
Waspodo Bayu Aji
"Dalam sistem tenaga listrik, frekuensi sistem hams dapat dijaga pada standar operasi dari setiap mesin pembangkit daya ( 50 Hz). Masalah utama pada saat pembangkitan tenaga listrik adalah jika sistem mengalami gangguan ketidakseimbangan daya sistem sehingga menyebabkan tejadinya penurunan frekuensi sistem.
Penurunan frekuensi sistem ini sangat berbahaya sebab bila tidak teramati dengan baik dan segera dilakukan tindakan penyelamatan akan dapat menyentuh batas bawah frekuensi sistem terinterkoneksi yang masih dapat bertahan (47.5 Hz) sehingga akibat fatal yang terjadi adalah pemadaman total (black out).
Tesis ini membahas mengenai bagaimana mengatasi penurunan frekuensi sistem akibat beban berlebih dengan melakukan pelepasan beban otomatis pada sistem Jawa-Bali dengan menerapkan teknologi Fuzzy. Aturan-aturan berbasis pengetahuan para pakar atau data yang menjadi rule base fuzzy ternyata dapat diterapkan untuk menghasilkan nilai besar keputusan pelepasan beban yang tepat seperti hasil perhitungan rumus matematika

In the case of the electrical energy, the system frequency has to be maintained at the operational standard of every energy producing set of 50 Hz. The main problem which may arise at the electrical energy production is when there is problem due to the energy system equilibrium which will eventually cause the lessening in the system frequency.
The lessening in the system frequency will create serious problem, because if that remains well unnoticed and no safety action is soon be taken, this may eventually touch the base limit at the interconnection system frequency, which, so far is still able to stand (at 47,5 Hz) and so that a fatal consequences may follow, which is the total black out.
This thesis basically discuss the way how to overcome in any way the lessening of the system frequency as a result of the excess burden by releasing automatic burden in the in the Java-Ball systems and by making use of the fuzzy logic technology.
All the rulings which are based on the expert knowledge and data which so far have been parts of ttie rule base fuzzy, all prove to be applicable to produce outstanding function in the decision of releasing the right amount of burden just in line with application of the mathematical formula.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2003
T284
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>