Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160989 dokumen yang sesuai dengan query
cover
Ditya Kholil Ibrahimi
"Dalam rangka meningkatkan performa anoda litium titanat, penelitian ini difokuskan pada doping ion Ca2 untuk mensubtitusi ion Li membentuk Li4-xCaxTi5O12 dengan nilai x=0, 0.05, 0.075, dan 0.125 dengan menggunakan metode solid-state. Sumber ion Ca2 adalah CaCO3 yang berasal dari cangkang telur ayam yang sudah dibersihkan, dihaluskan dan dikeringkan. Dopant ini dikarakterisasi untuk mengetahui komponen fasa utama melalui pengujian XRD dan SEM-EDS. Serbuk sampel LTO pristine dan yang didoping dikarakterisasi dengan XRD, SEM-EDS, STA, dan FTIR. dan juga diuji performa elektrokimianya dengan EIS, CV dan CD.
Hasil karakterisasi dopant CaCO3 dari cangkang telur menunjukkan komponen fasa utama CaCO3 dengan polimorf calcite, dengan morfologi butiran partikel halus teraglomerasi yang memiliki kemurnian tinggi. Karakterisasi serbuk sampel material anoda menggunakan uji XRD menunjukkan dopant Ca berhasil masuk kedalam struktur spinel LTO, dengan kadar penambahan maksimum x=0.05 dimana penambahan berlebih menghasilkan impuritas CaTiO3.
Hasil SEM memperlihatkan semua sampel doping memiliki morfologi yang hampir serupa, partikulat teraglomerasi. Sampel LTO yang didoping ion Ca2 memiliki ukuran partikel yang lebih kecil jika dibandingkan dengan LTO tanpa doping. Peningkatan konduktivitas elektronik terlihat pada sampel yang didoping, dengan nilai hambatan terendah ditunjukkan oleh Li3.875Ca0.125Ti5O12 dengan Rct terendah yaitu 39.5 ?. Li3.875Ca0.125Ti5O12 juga memiliki initial discharge capacity tertinggi dengan nilai 168.2 mAh/g. Akan tetapi pada aplikasi rate tinggi, performa terbaik ditunjukkan oleh Li3.925Ca0.075Ti5O12 dengan kapasitas discharge 30.2 mAh/g pada 12 C, dimana persentasi retensi kapasitasnya sebesar 21.43 dibandingkan dengan kapasitas discharge pada rate 0.2 C.

In order to improve the performance of Li4Ti5O12 LTO anode, this research was focused on Ca2 ion doping as substitute to Li ion to form Li4 xCaxTi5O12 with values of x 0, 0.05, 0.075, and 0.125 using solid state reaction. The Ca2 ion source was CaCO3 which synthesized from chicken eggshell that has been washed, grounded and dried. The dopant was characterized to determine the main phase component by XRD and SEM EDS. Pristine LTO and Ca doped LTO sample powder was characterized by XRD, SEM EDS, STA, FTIR and was also tested its electrochemical performance by EIS, CV and CD.
The CaCO3 dopant characterization results showed CaCO3 in calcite polymorph as the main phase, with agglomerated fine particulate morphology and high purity. Characterization of LTO sample powder with XRD revealed that dopant Ca successfully enter the structure of LTO spinel, with maximum addition level x 0.05, which excessive addition led to CaTiO3 impurity forming.
SEM result showed all Ca doped LTO have almost similar morphology, which was agglomerated particulate. Ca doped LTO samples have smaller particle size compared to pristine LTO. Electronic conductivity improvement was spotted at all of Ca doped LTO sample, with Li3.875Ca0.125Ti5O12 showed the lowest charge transfer resistance of 39.5 . Li3.875Ca0.125Ti5O12 also had the highest initial discharge capacity of 168.2 mAh g. Nevertheless, in high rate application, the best performance was showed by Li3.925Ca0.075Ti5O12 with discharge capacity of 30.2 mAh g at 12 C, which capacity retention percentage of 21.43 compared to discharge capacity at 0.2 C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Febby Fitratama
"

Baterai Lithium-Ion merupakan salah satu media yang efektif untuk meyimpan energi. Baterai ini pun terus diteliti lebih lanjut untuk meningkatkan efisiensi dan kekuatan baterai. Pada saat ini. Anoda LTO merupakan material yang sedang dikembangkan sebagai pengganti anoda grafit. LTO atau litium titanat memiliki beberapa kelebihan seperti sifat zero strain yaitu tidak terjadi perubahan volume atau perubahan volume yang sangat rendah saat charge dan discharge. Sintesis LTO dilakukan dengan menggunakan metode solid state dengan proses mekanokimia dan sintering pada suhu 850o C selama 6 jam. Kadar Zn yang ditambahkan sebesar 3 wt%, 7wt% dan 11 wt%. dan grafit sebesar 3 wt%. Penambahan doping Zn pada LTO meningkatkan konduktifitas elektronik dan kapasitas spesifik dari baterai. Komposit LTO-Grafit/Zn dilakukan karakterisasi menggunakan XRD dan SEM-EDS. Uji performa baterai dilakukan menggunakan pengujian EIS, CV dan CD. Hasil pengujian EIS didapatkan nilai konduktifitas tertinggi pada komposit LTO-grafit/Zn 3%. Kapasitas spesifik tertinggi hasil uji CV didapatkan LTO-grafit/Zn 11% sebesar 154.3 mAH/g. Kapasitas chage discharge tertinggi didapatkan LTO-grafit/Zn 11% pada current rates 0.5 C sampai 15C


Lithium-Ion batteries are one of the effective media for storing energy. This battery continues to be investigated further to increase the efficiency and power of the battery. At this time. LTO anode is a material that is being developed as a substitute for graphite anode. LTO or lithium titanate has several advantages, such as the zero strain characteristic, that is, there is no change in volume or volume changes that are very low during charge and discharge. The LTO synthesis was carried out using a solid state method with a mechanochemical process and sintering at a temperature of 850o C for 6 hours. Zn content added is 3 wt%, 7wt% and 11 wt%. and graphite at 3 wt%. Addition of Zn doping to LTO increases the electronic conductivity and specific capacity of the battery. LTO-Graphite/Zn composites were characterized using XRD and SEM-EDS. Battery performance test is carried out using EIS, CV and CD testing. The EIS test results obtained the highest conductivity value on 3% LTO-graphite / Zn composites. The highest specific capacity CV test results obtained LTO-graphite/Zn 11% of 154.3 mAH / g. The highest chage discharge capacity is obtained by LTO-graphite/Zn 11% in the current rates of 0.5 C to 15C.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Betalia
"LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.

LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahwa Denia Afriandi
"Sintesis menggunakan kombinasi metode solution combustion synthesis (SCS) dan solid state telah dilakukan dan diuji coba untuk mendapatkan katode baterai ion litium LiNi0,8Mn0,1Co0,1- xMoxO2/C dengan prekursor LiNO3, Ni(NO)3.6H2O, Mn(NO3)2.4H2O, Co(NO3)2.6H2O, (NH4)6Mo7O24, dan CH4N2O sebagai bahan bakar dengan dilarutkan dengan aquades dan diaduk menggunakan hot plate magnetic stirrer pada temperatur ruangan. Larutan dipanaskan pada temperature 100oC selama 1 jam hingga 200oC selama 2 jam hingga terbentuk pasta cokelat. Pemanasan lanjutan dilakukan pada muffle furnace pada temperature 500oC selama 2 jam, dan kalsinasi pada temperature 900oC selama 3 jam. Super-p carbon black ditambahkan sebagai adisi sebanyak 0,5 wt% dan dicampurkan dengan serbuk NMC 811 menggunakan agathe mortar selama 1 jam dan kalsinasi pada 300oC selama 3 jam. Serbuk berwarna hitam hasil sintesis dianalisis mikroskop elektron (SEM) untuk melihat morfologi, Hasil SEM menunjukkan sampel hasil sintesis memiliki ukuran dengan kisaran 0,1-1,55 µm. uJI difraksi sinar-X (XRD) untuk melihat kristalinitas dan menunjukkan bahwa terjadi pergeseran puncak 2θ ke arah kanan karena pengaruh oksida logam yang terbentuk. Analisis elektrokimia dilakukan dengan impedansi elektrokimia (EIS) untuk melihat hambatan yang dihasilkan dan berpengaruh terhadap konduktivitas listrik dari katode. Hasil karakterisasi memperlihatkan bahwa penambahan Mo dengan jumlah tertentu dan karbon yang merata dapat meningkatkan konduktivitas listrik dari katode NMC 811. Uji Cyclic Voltamettry (CV) menunjukkan puncak oksidasi reduksi yang lebih dari 1 dan mengindikasikan pengotor.

Synthesis using a combination of solution combustion synthesis (SCS) and solid state methods has been carried out and tested to obtain a lithium ion battery cathode LiNi0,8Mn0,1Co0,1-xMoxO2/C with precursors LiNO3, Ni(NO)3.6H2O, Mn(NO3)2.4H2O, Co(NO3)2.6H2O, (NH4)6Mo7O24, and CH4N2O as fuel by being dissolved in distilled water and stirred using a hot plate magnetic stirrer at room temperature. The solution was heated at a temperature of 100 oC for 1 hour to 200oC for 2 hours to form a dark brown paste. Further heating was carried out in a muffle furnace at a temperature of 500oC for 2 hours, and calcination at a temperature of 900oC for 3 hours. Super-p carbon black was added as addition as much as 0.5 wt% and mixed with NMC 811 powder using agathe mortar for 1 hour and calcined at 300oC for 3 hours. The synthesized black powder was analyzed by electron microscopy (SEM) to see morphology. SEM results showed that the synthesized sample had a size in the range of 0.1-1.55 m. X-ray diffraction test (XRD) to see the crystallinity and showed that there was a shift of the 2θ peak to the right due to the influence of the metal oxide formed. Electrochemical analysis was carried out with electrochemical impedance (EIS) to see the resulting resistance and its effect on the electrical conductivity of the cathode. The characterization results showed that the addition of a certain amount of Mo and an even distribution of carbon could increase the electrical conductivity of the NMC 811 cathode. Cyclic Voltamettry (CV) test showed an oxidation-reduction peak that was more than 1 and indicated an impurity."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yohana Ruth Margaretha
"Sintesis komposit Li4Ti5O12 LTO nanorods dilakukan dengan karbon aktif sebanyak 3 wt dan silikon nano dengan komposisi yang berbeda sejumlah 10 wt, 15 wt, dan 20 wt. LTO memiliki karakteristik zero strain dan siklus hidup yang panjang. Akan tetapi, LTO mempunyai kapasitas terbatas dan konduktivitas elektrik buruk. Penambahan silikon nano dapat menambah kapasitas, sementara karbon aktif memiliki luas area spesifik yang besar untuk meningkatkan konduktivitas elektrik. Cetakan nanorods berasal dari TiO2 yang didapatkan dari titanium IV butoksida menggunakan metode sol-gel. Struktur nanorods didapatkan dengan proses hidrotermal dalam larutan NaOH 4 M. Namun, struktur yang terbentuk adalah struktur needle-like dan fase yang terbentuk adalah Li2TiO3. Performa baterai ditentukan dengan uji CV, CD, dan EIS. Hasil pengujian EIS menunjukkan bahwa LTO memiliki konduktivitas elektrik tertinggi. Hasil yang diperoleh dari uji CV adalah kapasitas spesifik tertinggi ditemukan pada LTO-AC/15 Si nano sejumlah 140,7 mAh/g.

The synthesis of Li4Ti5O12 LTO nanorods composites with 3 wt activated carbons AC and nano Si with different composition of 10 wt, 15 wt, and 20 wt has been carried out. LTO has zero strain characteristics with the long life cycle. However, the capacity is limited and has poor electrical conductivity. The addition of nano Si should enhance the capacity, while the activated carbon should provide a large specific surface area to increase the electrical conductivity. The nanorods templates are from TiO2, which obtained from titanium IV butoxide using the sol gel method. The nanorods structures should be achieved by a hydrothermal process in NaOH 4 M solution. However, needle like structures are achieved and Li2TiO3 phase is formed finally. The battery performances are determined by CV, CD, and EIS tests. EIS results showed the highest electrical conductivity was found in LTO only. The CV test obtained that the highest specific capacity was found in LTO AC 15 nano Si with 140.7 mAh g as well as charge discharge capacity at current rate 0.2 to 20 C."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Reza
"Energi pada umumnya dibagi menjadi 2, yaitu energi terbarukan dan energi tidak terbarukan. Energi terbarukan menjadi solusi untuk mengatasi efek negatif energi tak terbarukan karena emisi karbon yang sangat rendah serta ketersediaan sangat melimpah di bumi. Indonesia memiliki tujuan untuk menggunakan energi terbarukan dengan maksimal untuk mengurangi ketergantungan dengan energi tak terbarukan. Hal ini mendorong penemuan yang mengarah kepada pembentukan dan penggunaan sumber energi baru.
Penelitian ini ditujukan untuk mempelajari proses sintesis Li4Ti5O12 (LTO) dengan metode solid state dan pembuatan komposit dari anoda LTO dengan penambahan unsur Sn nano dan grafit dengan tujuan menaikkan performa anoda LTO. Penambahan Sn nano dan grafit dilakukan sebanyak masing-masing dengan variasi 10 wt%, 15 wt%, 20 wt% dan 5 wt%.
Sintesis LTO diawali dengan metode solid state kemudian di lakukan proses sintering selama 6 jam pada temperature 850 oC. Pencampuran grafit dan Sn nano pada anoda LTO dilakukan secara mekanokimia. Fabrikasi baterai dilakukan dengan diawali proses pembuatan slurry kemudian dilanjutkan proses coating yang selanjutnya di masukkan ke dalam coin cell.
Berdasarkan hasil karakterisasi baterai didapatkan kristalinitas terbaik pada anoda LTO/C-Sn nano 10 wt%. Pada pengujian performa baterai untuk nilai kapasitas spesifik (CV) dan retensi kapasitas (CD) pada anoda LTO/C-Sn nano 10 wt% wt memiliki nilai paling baik yaitu sebesar 207 mAh/g dan 1,5%. Nilai konduktivitas terbaik yatu anoda LTO/C-Sn nano 15 wt% dengan resistivitas sebesar 46,97 Ohm.

Energy is generally divided into 2, namely renewable energy and non-renewable energy. Renewable energy is the solution to overcome the negative effects of non-renewable energy because of very low carbon emissions and abundant availability on earth. Indonesia has a goal to use renewable energy to the maximum to reduce dependence on non-renewable energy. This encourages findings that lead to the formation and use of new energy sources.
This research is aimed at studying the synthesis process of Li4Ti5O12 (LTO) with solid state method and making composites from LTO anodes with the addition of Sn nano and graphite elements with the aim of increasing the performance of LTO anodes. Addition of Sn nano and graphite was carried out as many as each with variations of 10 wt%, 15 wt%, 20 wt% and 5 wt%.
The LTO synthesis begins with a solid state method and then sintering for 6 hours at 850oC. Mixing graphite and Sn nano on the LTO anode is carried out mechanochemically. Battery fabrication is carried out by starting the process of making slurry and then continuing with the coating process which is then put into a coin cell.
Based on the results of the battery characterization the best crystallinity was obtained at the 10 wt% nano LTO/C-Sn anode. On battery performance testing for specific capacity values (CV) and capacity retention (CD) on nano 10 wt% LTO/C-Sn anode the best value was 207 mAh/g and 1.5%. The best conductivity value is nano 15 wt% LTO/C-Sn anode with a resistivity of 46.97 Ohm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Slamet Priyono
"Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk material anoda pada baterai ion lithium telah berhasil dilakukan dengan metode reaksi padat. Doping Al pada Li4Ti5O12 bertujuan untuk menaikkan konduktifitas ionik dan memperkuat struktur sedangkan doping Na bertujuan untuk menurunkan tegangan operasi. Pendopingan dilakukan dengan mengikuti persamaan Li(4-(x/3+y))AlxNayTi(5-2x/3)O12 (x=0; 0,025; 0,05; 0.075 dan y= 0;1) dimana atom Al mensubtitusi Ti dan Li sedangkan atom Na mensubtitusi Li. Sintesis dilakukan melalui metoda metalurgi serbuk dengan menggunakan Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 sebagai bahan baku. Pada penelitian ini, pengaruh subtitusi Na dan Al dalam Li4Ti5O12 terhadap struktur, morphologi, ukuran partikel, surface area dan performa elektrokimia diteliti secara detil.
Hasil penelitian menunjukkan bahwa doping ion Al pada Li4Ti5O12 tidak merubah struktur kristal Li4Ti5O12. Hasil FTIR menkonfirmasi tidak adanya perubahan struktur spinel pada gugus khas ketika didoping Al, dengan meningkatnya doping Al membuat tekstur butir menjadi berpori, ukuran partikel menurun dengan ukuran terkecil 20,32 μm, surface area meningkat dengan nilai tertinggi 8,25 m2/gr, konduktifitas ionik meningkat dengan konduktifitas terbaik adalah 8,5 x 10-5 S/cm, tegangan kerja sekitar 1,55 V dan kestabilan siklus terbaik diperoleh pada doping Al 0,025 dengan kapasitas maksimum 70 mAh/g. Sedangkan doping Na dalam Li4Ti5O12 menyebabkan perubahan struktur dengan terbentuk 3 phasa baru yaitu NaLiTi3O7, Li4Ti5O12, dan Li2TiO3.
Perubahan struktur juga dikonfirmasi dengan perubahan gugus khas hasil analysis FTIR. Sedangkan kenaikan doping Al menyebabkan phasa NaLiTi3O7 semakin dominan, tekstur butiran menjadi halus, ukuran partikel menurun dengan ukuran terkecil 30,89 μm, surface area menurun, konduktifitas ionic stabil pada 2,5 x 10-5 S/cm, potensial kerja di 1,3 V dan 1,55V, kestabilan struktur didapat pada doping Al 0,05 dengan kapasitas 90 mAh/g. Secara keseluruhan menunjukkan bahwa penambahan doping Al mampu meningkatkan konduktifitas ionik dan kestabilan siklus dan doping Na menurunkan tegangan kerja.

Synthesis of Li4Ti5O12 powder doped by Al and Na atoms for lithium ion battery anodes had been carried out using solid state reaction. Al doped on Li4Ti5O12 aim is to increase the ionic conductivity and strengthen the structure of Li4Ti5O12 while Na doped aimed is to decrease the operating voltage. Al and Na doped on Li4Ti5O12 had been carried out by following equation Li(4 - (x / 3 + y))AlxNayTi(5-2x/3)O12 (x = 0; 0,025; 0.05, 0.075 and y = 0, 1) where the Al atoms substitute Ti and Li while Na substituting Li atoms. Synthesis is conducted through a solid state reaction by using Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 as raw materials. In this study, the effects of substitution of Na and Al in Li4Ti5O12 on the structure, morphology, particle size, surface area, and electrochemical performance were deep studied.
The results showed that the Al doped on the Li4Ti5O12 was not change crystal structure of Li4Ti5O12. FTIR results confirmed that the absence of changes spinel structure in fingerprint region when doped Al, with increasing Al doped make textures porous grains, particle size decreases to 20.32 μm, surface area increases with highest value of 8.25 m2/gr, conductivity is increased with the best conductivity 8.5 x 10-5 S/cm, , the working voltage of about 1.55 V and the best cycle stability was obtained on doping Al 0.05 and the maximum capacity is 70 mAh/g. While doping Na in Li4Ti5O12 caused structural changes to the three phases formed NaLiTi3O7, Li4Ti5O12, and Li2TiO3.
Tranformation on the structure is also confirmed by the changes in the fingerprint region with FTIR analysis. While the increase in Al doping causes NaLiTi3O7 phase become dominant, texture of granular becomes bigger and smoother, the particle size decreases to 30.89 μm, surface area decreases, the ionic conductivity was stable at 2.5 x 10-5 S/cm, The working potential in 1, 3 V and 1.55 V, the stability of the structure obtained on doping Al 0.05 and the maximum capacity of 90 mAh/g. Overall showed that the addition of Al doped can improve the ionic conductivity while stability of the cycle and the Na doped decrease the working voltage.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42630
UI - Tesis Membership  Universitas Indonesia Library
cover
Abdul Salaam
"Litium Titanat (Li4Ti5O12) memiliki beberapa kelebihan : sifat zero strain, charge-discharge yang panjang, tidak menimbulkan SEI (Solid Electrolyte Interphase). Namun Litium Titanat (LTO) memiliki kapasitas yang rendah (10-9 S cmn-1), dimana diatasi melalui pembuatan komposit dengan material lain. Grafit memiliki kapasitas spesifik yang besar, 372 mAh/g. Penambahan ZnO dapat meningkatkan kapasitas dan konduktivitas.
Penelitian ini berfokus mengetahui pengaruh penambahan ZnO variasi 3%, 5%, dan 7% dengan konsentrasi grafit tetap sebesar 5% sintesis solid state dengan sampel pembanding neat LTO dan LTO/Grafit disertai penambahan serbuk LiOH sebesar 6%. XRD menunjukkan adanya Li4Ti5O12 yang terbentuk, dengan ukuran kristalit terbesar pada LTO/Grafit-ZnO 3%. Hasil EIS menunjukkan LTO/Grafit-ZnO 5% memiliki konduktivitas terbaik.
Hasil CV menunjukkan Eo terbesar pada 3%, dan uji CV menghasilkan kapasitas spesifik yang lebih besar dari pengujian CD akibat C rate yang lebih besar, dengan kapasitas spesifik tertinggi CV pada LTO/Grafit-ZnO 3%, dan kapasitas terbesar CD pada LTO/Grafit-ZnO 5%, tidak terlalu jauh dengan kapasitas LTO/Grafit-ZnO 3%.
Perhitungan retensi menunjukkan LTO/Grafit-ZnO 3% memiliki rate capability baik sehingga tahan lama. Ketiga sampel memiliki efisiensi coulomb tinggi, sehingga tidak ada energi yang hilang selama charge-discharge. Meninjau hasil penelitian, dibutuhkan penelitian lebih lanjut untuk menghasilkan hasil yang optimal dalam meningkatkan konduktivitas serta kapasitas.

Lithium Titanate (L4Ti5O12) has several advantages, zero strain, good charge-discharge stability, and does not form SEI (Solid Electrolyte Interphase). However, LTO has low specific capacity (10-9 S cmn-1), and to improve that is to make a composite with another materials. Graphite has high specific capacity, 372 mAh/g, and the addition of ZnO would enhanced the capacity and conductivity.
This research focused on examined the effect of ZnO by various concentration 3%, 5% and 7% with a fixed concentration of graphite 5% by using solid state method and make a comparison between the neat LTO along with LTO/Graphite with the addition of excess LiOH 6% for LTO. XRD shows the presence of Li4Ti5O12 on each samples with the biggest crystallite size found in LTO/Graphite-ZnO 3%.
EIS shows LTO/Graphite-ZnO 5% has the best conductivity, and CV shows that LTO/Graphite-ZnO 3% has the biggest specific capacity. CD shows LTO/Graphite-ZnO 5% has the biggest capacity, with a little deviation form LTO/Graphite-ZnO 3%.
Retention indicate the LTO/Graphite-ZnO 3% has good rate capability, and all the samples have good coulumbic efficiency, indicates no energy lost during charge-discharge. Reveiweing the results, further research is need to obtained the best results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Iqbal
"Jenis baterai yang banyak dipakai saat ini, yaitu baterai ion litium. LTO merupakan material anoda yang menjanjikan karena memiliki siklus yang stabil, kapabilitas tinggi, dan aman dengan elektrolit konvensional. Alasan lain yang menjadikan LTO sebagai material yang menjanjikan untuk digunakan sebagai baterai ion litium yaitu karena memiliki sifat interkalasi dan deinterkalasi ion litium yang baik dan juga mobilitas ion litium yang luar biasa. Untuk meningkatkan kembali performa dari LTO demi memenuhi kebutuhan media penyimpan energi yang tinggi maka pada penelitian kali ini dilakukan doping pada LTO dengan co-doping Mg dan Mn dengan penambahan cerasperse sebagai zat pendispersi pada saat sintesis material aktif. Dispersan cerasperse (Ammonium Polycarbonate) bisa digunakan untuk mendispersikan partikel dan juga menghindari terjadinya agregasi. Dispersan memiliki peran positif terhadap penyebaran material aktif pada elektroda. Ketika penyebaran material aktif merata maka akan meningkatkan performa dari baterai. Metode untuk pencampuran prekursor sintesis awal dilakukan dengan metode solid-state dan dibantu dengan proses sonikasi. Variasi pada penambahan cerasperse yaitu sebesar 0%, 2,5%, 5%, dan 7,5%. Dari hasil pengujian SEM EDS menunjukkan bahwa penambahan cerasperse sebanyak 7,5% bisa mengurangi terjadinya aglomerasi dan meningkatkan persebaran partikel pada serbuk LTO/MgMn. Pada penambahan cerasperse sebanyak 7,5% juga terjadi peningkatan konduktifitas dari baterai berdasarkan pengujian EIS tetapi kapasitas spesifik yang dihasilkan buruk berdasarkan pengujian CV dan CD.

The lithium ion battery is the sort of battery that is most frequently used nowadays. LTO is a guaranteed anode material because it has a stable cycle, high capability, and is safe with conventional electrolytes. Another reason that makes LTO a promising material for use in lithium ion batteries is that it has good lithium ion intercalation and deintercalation properties as well as the outstanding mobility of lithium ions. To improve the performance of LTO in order to meet the need for high energy storage media, in this study, LTO was doped with Mg and Mn co-doping with the addition of cerasperse as a dispersing agent during the synthesis of active materials. Dispersants like Cerasperse (Ammonium Polycarbonate) can be employed to spread particles out while also preventing agglomeration. Dispersants have a positive role in the dispersion of the active matter on the electrodes. When the active material is evenly distributed, it will improve the performance of the battery. The method for mixing the precursors of the initial synthesis was carried out by the solid-state method and assisted by the sonication process. Variations in the addition of cerasperse are 0%, 2.5%, 5%, and 7.5%. From the results of the SEM EDS test, it was shown that the addition of 7.5% cerasperse could reduce the occurrence of agglomeration and increase the distribution of particles in LTO/MgMn powder. According to EIS tests, the battery's conductivity increased at a cerasperse addition of 7.5 %, however the specific capacity produced was poor based on chargedischarge."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>