Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5119 dokumen yang sesuai dengan query
cover
Yani Faozani Alli
"The formation of microemultion in the injection of surfacant at chmical flooding is crucial for the effectiveness of injection. Microemultion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemultion. Its transculent homogeneous mixtures of oil and water in the presence of surfacant is believed to displace the remaining oil in the reservoir. Preveriously, we showed the effect of microemultion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that sufficient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemultion flooding to enchance the oil recovery in targeted representative core has not been investigated. In this artice, the performance of microemultion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale trought the core flooding experiment. Microemultion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscocity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemultion-based formulation t recover the oil production. the results showed that polymer at 2200 ppn in the ASP mixture can generate 12.16cP solution which is twice higher than the oil viscosity to prevent the fingering occurence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design of injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recover after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71%of initial oil saturation (Soi). Those results conclude that the microemultion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir"
Jakarta: LEMIGAS, 2017
620 SCI 40:2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Ikha Novita Ma`wa Sukriya
"Dalam rangka menanggulangi turunnya produksi minyak bumi, telah dikembangkan teknologi Enhanched Oil Recovery (EOR) yaitu pengurasan tahap lanjut pada sumur minyak tua. Salah satu teknologi EOR yaitu injeksi kimia yang dapat berupa surfaktan, alkali-surfaktan, alkali-surfaktan-polimer. Penggunaan surfaktan ini dimaksudkan untuk menurunkan tegangan antar-muka (interfacial tension=IFT) antara minyak dan air sehingga mampu membawa minyak keluar dari pori-pori batuan reservoir. Surfaktan untuk EOR harus memenuhi kriteria parameter screening test yaitu compatibility test dan pengukuran IFT.
Pada penelitian ini reservoir yang dituju adalah lapangan Rantau. Surfaktan diperoleh dengan memformulasikan 25% w/w Metil Ester Sulfonat (MES), 25% w/w Surfaktan Tween dan 50% w/w berbagai pelarut (EGBE, Etanol dan EGBE-Etanol). Alkali (Na2CO3) yang ditambahkan dalam larutan surfaktan bertujuan untuk menurunkan nilai IFT. Proses formulasi dilakukan tanpa dan dengan pemanasan 40oC. Hasil formulasi surfaktan terbaik dalam penelitian ini adalah 25% MES, 25% Surfaktan Tween dan 50% EGBE yang memenuhi criteria compatibility meskipun nilai IFTnya belum tercapai. Formula surfaktan ini dilarutkan dalam brine water dengan konsentrasi 0,1%; 0,5%; 1% dan 2%. Hasil screening test terbaik adalah pada konsentrasi 0,1% yaitu nilai IFT mencapai 10-2 dyne/cm.

In order to overcome the decline of crude oil production, it has been developed Enhanched Oil Recovery (EOR) technolog, that is an recovery of depletion of old oil wells. EOR technology is one of the chemical injection which may be a surfactant, an alkaline-surfactant, alkali-surfactant-polymer. The use of surfactant is intended to reduce the interface tension (interfacial tension = IFT) between oil and water so it makes the oil out from the pores of reservoir rock. Surfactants for EOR must fulfil the criteria for a screening test parameters, there are compatibility and IFT test.
In this study, the target reservoir is Rantau field. Surfactant obtained by formulating 25% w/w Methyl Ester Sulfonate (MES), 25% w/w surfactant Tween 80 and 50% w/w various solvents (EGBE, EGBE-Ethanol and Ethanol). Alkaline (Na2CO3) was added to the surfactant solution aims to reduce the value of IFT. Formulation process carried out without and with heating 40oC. The best surfactant formulation results in this study is 25% MES, 25% Tween 80 and 50% EGBE that accomplish the criteria of compatibility, even though IFT value has not been reached. Formula surfactant is dissolved in the brine water with a concentration of 0.1%, 0.5%, 1% and 2%. The best results screening test at a concentration of 0.1% when the value of IFT reached 10-2 dyne / cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S388
UI - Skripsi Open  Universitas Indonesia Library
cover
Yonathan Rakau Brilliwan
"Peningkatan produksi minyak bumi di Indonesia menjadi hal mendesak mengingat target produksi 1 juta barrel perhari pada tahun 2030 di tengah penurunan produksi. Permasalahan tersebut memberikan insentif untuk menelusuri metode EOR non-konvensional, biopolymer flooding. Xanthan Gum merupakan biopolimer dengan ketahanan salting effect yang sangat baik sehingga memberikan potensi digunakan bersama air laut sebagai campuran driving fluid dalam metode injeksi kontinuous. Selain itu, HCPV injeksi meningkatkan performa pemulihan jika flooding berhasil . Maka dari itu, penelitian ini menganalisis pengaruh penggunaan air laut sebagai fluida pendorong dan HCPV injeksi terhadap displacement sweep efficiency, recovery factor, serta harga minyak dan gas untuk IRR 15% mengikuti skema bisnis gross split. Penelitian dengan permodelan reservoir sintetik sandstone heterogen, dilanjutkan dengan permodelan EOR dengan membandingkan berbagai strategi injeksi EOR biopolymer flooding terhadap waterflooding, dan analisis ekonomi cashflow mengikuti skema bisnis gross split. Peningkatan HCPV injeksi dapat meningkatkan recovery factor hingga 22.26% dan displacement sweep efficiency 21.27%. Penggunaaan air laut sebagai campuran fluida pendorong mengurangi recovery factor hingga 0.55% dan displacement sweep efficiency 0.54%. Harga minyak minimum proyek dapat mencapai 45.75$ per barrel dengan cost of EOR sebesar 4.52$ per barrel. 

Increasing Indonesian oil production is an urgent issue due fulfilling Indonesian production target of one million barrels per day in 2030 amidst production decline. This problem gives an incentive to explore non-conventional EOR method, biopolymer flooding. Xanthan gum biopolymer is resistant toward salting effect which has the potential to be used alongside brine as driving fluid mixture in a continuous injection. Moreover, HCPV injection increases oil field’s recovery rate only if the flooding succeeds. Therefore, this research’s purpose is to analyze the usage of brine as driving fluid and HCPV Injection toward partially depleted sandstone reservoir’s displacement sweep efficiency, recovery factor and oil and gas price in reaching IRR 15% following Indonesian gross split scheme. Research methodology includes modelling of synthetic partially depleted heterogenous sandstone reservoir, continued with EOR modelling comparing different biopolymer flooding injection strategy with waterflooding, and cashflow economic analysis following gross split scheme. The increase of HCPV injection could increase recovery factor up to 22.26% dan displacement sweep efficiency up to 21.27%. The usage of sea water as mixture in driving fluid could decrease recovery factor up to 0.55% and displacement sweep efficiency 0.54%. The minimum project oil price reaches 45.75$ per barrel with the cost of EOR 4.52$ per barrel."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Based on previous studies ,nitrogen injection could recover oil up to 45-90 % of initial reserves...."
ITJOICT
Artikel Jurnal  Universitas Indonesia Library
cover
Mochamad Baihaki
"Enhanced Oil Recovery (EOR) merupakan metode tersier yang digunakan untuk meningkatkan produksi minyak bumi. Salah satu teknik yang digunakan dalam EOR yaitu chemical flooding dengan menginjeksikan bahan kimia ke dalam reservoir. Seleksi dilakukan terhadap surfaktan jenis SA (Sodium Lauril Sulfat), surfaktan jenis SB (Polioksietilen alkil eter fosfat) , dan surfaktan jenis SC (Etilen oksida propilen oksida blok kopolimer). Seleksi ini dilakukan berdasarkan 5 paramater uji yaitu Kompatibilitas, Stabilitas Termal, Kelakuan Fasa, Interfacial Tension, dan Imbibisi. Pada konsentrasi 1%, uji kompatibilitas untuk ketiga jenis surfaktan baik. Uji stabilitas termal terhadap surfaktan jenis SA cenderung stabil terhadap pemanasan, surfaktan jenis SB terdegradasi pada hari ke-30, surfaktan jenis SC mencapai cloud point pada hari ke-1 dan terdegradasi pada hari ke-60. Uji kelakuan fasa menghasilkan emulsi fasa bawah untuk ketiga jenis surfaktan. Pengukuran Interfacial Tension untuk surfaktan jenis SA, SB, dan SC berturut-turut yaitu 0,1723 mN/m, 0,0353 mN/m, dan 0,2001 mN/m. Uji Imbibisi menggunakan batuan sintetik (Pasir 70% : semen 30%), menghasilkan recovery oil untuk surfaktan jenis SA, SB, dan SC sebesar 2,09%, 0%, dan 4,16%. Uji Imbibisi menggunakan batuan sintetik (Pasir 90% : semen 10%), menghasilkan recovery oil untuk surfaktan jenis SA, SB, dan SC sebesar 2,42%, 0%, dan 4,69%. Formulasi surfaktan SC dan SA (0,9gr : 0,1gr) pada konsentrasi 1% menghasilkan nilai IFT yang optimal sebesar 0,13 mN/m dan uji Imbibisi menghasilkan recovery oil sebesar 4,84%.

Enhanced Oil Recovery (EOR) is a tertiary method used to improve oil production. One of technique is used in chemical EOR is flooding by injecting chemicals into the reservoir. The selection of the surfactant types are SA (Sodium lauryl sulfate), SB (polyoxyethylene alkyl ether phosphate), and SC (Ethylene oxide propylene oxide block copolymers). Selection is done by 5 parameter tests, namely compatibility, thermal stability, phase behavior, Interfacial Tension, and imbibition. At the concentration of 1%, the third compatibility test for both three types of surfactants is are relative good. Thermal stability test of the surfactant types SA tend to be stable against heating, surfactant types SB degraded on 30th day, the surfactant types SC reached the cloud point at day 1 and degraded on the 60th day. Phase behavior test of emulsions give under phase for the three types of surfactants. Measurement of Interfacial Tension for surfactant types SA, SB, and SC are 0.1723 mN/m, 0.0353 mN/m, and 0.2001 mN/m respectively. Imbibition test using synthetic rock (sand 70% : cement 30%), resulting in recovery of oil to surfactant types SA, SB and SC up to 2.09%, 0% and 4.16%. Imbibition test using synthetic rock (sand 90% : cement 10%), resulting in recovery of oil to surfactant types SA, SB, and SC up to 2.42%, 0% and 4.69%. Surfactant formulations of SC and SA (0,9 gr : 0,1 gr) at a concentration of 1% produces optimal IFT value of 0.13 mN / m and test imbibition oil recovery of 4.84%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61753
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bono, Edward de
New York: Simon and Schuster , 1969
153 BON m
Buku Teks SO  Universitas Indonesia Library
cover
Smith, Charles R.
Malabar, Florida: Van Nostrand Reinhold, 1985
665.538 4 Smi m
Buku Teks  Universitas Indonesia Library
cover
Faisal Adi Jatmoko
"Lapangan gas X merupakan lapangan produksi gas alam yang memiliki produk samping berupa CO2. Dikarenakan sifatnya yang korosif dan dapat menurunkan nilai jual gas, gas tersebut umumnya akan dibuang ke atmosfer. Akan tetapi CO2 sebenarnya memiliki nilai ekonomis yang tinggi jika dapat dimanfaatkan untuk Enhanced Oil Recovery (EOR). Pada proses injeksi EOR untuk lapangan minyak Y, dibutuhkan CO2 dengan tingkat kemurnian lebih dari 95 %. Tingkat kemurniaan CO2 sangat berperan dalam menentukan banyaknya minyak yang yang dapat dipulihkan sedangkan CO2 dari lapangan gas X hanya memiliki tingkat kemurnian sebesar 76,2 % dengan kandungan air mencapai 16,5 %. Oleh karena itu dibutuhkan proses tambahan untuk dapat menaikkan tingkat kemurnian CO2. Pressure Swing Adsorption (PSA) dan Triethylene Glycol (TEG) Absorption dapat digunakan untuk menghilangkan kandungan air yang terkandung dalam CO2. Setelah dimurnikan, CO2 akan ditransmisikan untuk kemudian digunakan untuk injeksi CO2 sehingga didapat rancangan fasilitas integrasi CO2-EOR yang utuh.
Berdasarkan hasil analisa ekonomi diperoleh penggunaan PSA pada fasilitas integrasi memiliki nilai NPV sebesar 349.376.372,23 USD, IRR sebesar 19,87 % , dengan biaya investasi sebesar 214.918.114 USD . Sedangkan penggunaan TEG memiliki nilai NPV sebesar 390.869.013,8 USD, IRR sebesar 20,37 %, dan biaya investasi sebesar 240.111.000 USD. Berdasarkan hasil analisis yang telah dilakukan penggunaan PSA dan TEG meskipun memiliki nilai investasi yang besar diperoleh hasil yang paling optimal dari segi net present value (NPV) sebesar 423.392.895,6 USD, Internal return rate (IRR) sebesar 20,71 %, dan payback periode selama 4,06 tahun. Selanjutnya dengan membandingkan skema PSC dan gross split pada penggunaan PSA dan TEG dapat diketahui bahwa gross split lebih optimal dengan nilai NPV sebesar 155 juta USD dan sebesar 19,68 % dibandingkan PSC dengan NPV sebesar 60,53 juta USD dan IRR sebesar 14,32 %. Faktor lain adalah ketahanan terhadap laju produksi minyak dan perubahan harga minyak gross split lebih baik dibanding PSC. Sehingga rancangan fasilitas integrasi CO2-EOR yang paling layak adalah dengan penggunaan Pressure Swing Adsorption (PSA) dan Triethylene Glycol (TEG) Absorption sebagai unit pemurnian CO2 dengan mengunakan skema keekonomian gross split.

The X gas field is a natural gas production field that has a CO2 product. Due to its corrosive nature and can reduce the selling value of gas, the gas will generally be discharged into the atmosphere. But CO2 actually has a high economic value if it can be used for Enhanced Oil Recovery (EOR). In the EOR injection process for the Y oil field, CO2 is needed with a purity of more than 95%. The level of purity of CO2 plays an important role in determining the amount of oil that can be recovered while CO2 from the gas field X only has a purity level of 76.2% with a water content reaching 16.5%. Therefore an additional process is needed to be able to increase the CO2 purity level. Pressure Swing Adsorption (PSA) and Triethylene Glycol (TEG) Absorption can be used to eliminate the water content contained in CO2. Once purified, CO2 will be transmitted and then used for CO2 injection so that a complete design of CO2-EOR integration facilities is obtained.
Based on the results of economic analysis obtained the use of PSA at the integration facility has an NPV value of 349,376,372.23 USD, an IRR of 19.87%, with an investment cost of 214,918,114 USD. Whereas the use of TEG has an NPV value of 390,869,013.8 USD, an IRR of 20.37%, and an investment cost of 240,111,000 USD. Based on the results of the analysis that has been carried out using PSA and TEG even though having a large investment value, the most optimal results obtained in terms of net present value (NPV) of 423,392,895.6 USD, Internal return rate (IRR) of 20.71%, and payback period of 4.06 years. Furthermore, by comparing the PSC and gross split schemes on the use of PSA and TEG, it can be seen that gross split is more optimal with NPV value of 155 million USD and 19.68% compared to PSC with NPV of 60.53 million USD and IRR of 14.32% . Another factor is the resistance to the rate of oil production and the change in gross split oil prices better than the PSC. So that the most feasible design of CO2-EOR integration facilities is to use Pressure Swing Adsorption (PSA) and Triethylene Glycol (TEG) Absorption as CO2 purification units using gross split economic schemes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T51906
UI - Tesis Membership  Universitas Indonesia Library
cover
Salicca Paramita
"ABSTRAK
Penelitian ini membahas mengenai implikasi perubahan mekanisme assume and discharge menjadi cost recovery pasca PP 79 Tahun 2010 dalam pengenaan PBB terhadap K3S eksplorasi hulu migas ditinjau dari asas ease of administration yang kemudian dijadikan dasar untuk evaluasi kebijakan. Metode penelitian yang digunakan adalah metode kuantitatif deskriptif dengan teknik analisis data kualitatif. Hasil penelitian ini adalah perubahan mekanisme assume and discharge menjadi cost recovery terhadap pengenaan PBB eksplorasi hulu migas tidak sesuai dengan asas ease of administration dan tidak memenuhi 6 dimensi evaluasi kebijakan. Saran yang dapat diberikan adalah mekanisme assume and discharge diberlakukan kembali untuk K3S eksplorasi hulu migas.

ABSTRACT
This research explain about implication of the change of assume and discharge mechanism into cost recovery mechanism post Government Regulation No. 79 Year 2010 in the imposition of land and building tax for the upstream oil and gas contractor during the exploration phase reviewed by the ease of administration principle which then used as the evaluation ground to the policy. This research used quantitative descriptive approach and qualitative data collection method. This research concludes that the change of assume and discharge mechanism into cost recovery mechanism for the imposition of land and building tax for upstream oil and gas exploration activity is unsuitable with the ease of administration principle and unfulfilled the 6 dimensions of policy evaluation. An advice to resolve this issue is to re apply the assume and discharge mechanism for oil and gas contractor during the exploration phase."
2017
S66293
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budiman Chandra
"Sebagai kemasan, Jelly Cup pada prinsipnya hanya sekali pakai saja (disposable) sehingga menjadi tuntutan utama agar kemasan seringan mungkin untuk menghemat biaya material dan juga isu lingkungan yang menganjurkan sesedikit mungkin penggunaan plastik. Optimasi awal produk Jelly Cup 100 ml dilakukan dengan simulasi CAE menggunakan perangkat lunak mpa (moldflow plastic advisor) dan dilanjutkan dengan mpi (moldflow plastic insight) dengan parameter utama ketebalan dinding yang berhubungan dengan berat produk Tujuannya adalah mendapatkan tebal dinding setipis mungkin untuk diproses pada cetakan injeksi. Analisis hasil simulasi komputer menunjukkan ketebalan yang optimum untuk produk Jelly Cup 100 ml ini adalah 0.5 mm. Optimasi berikutnya adalah desain cetakan yang dilakukan meliputi 4 bagian utama pada cetakan yaitu: konstruksi pada rongga cetak, sistem saluran masuk (feeding system), sistem pendingin (cooling system), sistem pengeluaran produk (ejection system). Percobaan eksperimental dengan metoda trial and error dilakukan dalam tiga macam ketebalan yaitu: 0.42, 0.46, dan 0.50 mm. Hasilnya menunjukkan pada ketebalan 0.46 dan 0.50 memungkinkan untuk mencetak produk yang baik, perbedaannya ada pada tekanan injeksi dan waktu siklus. Setelah dilakukan analisa dan diskusi, maka didapatkan bahwa ketebalan 0.50 mm memang merupakan ketebalan yang ideal dan mendekati hasil simulasi (waktu siklus 4.1-4.2 detik dan berat produk 4.1 gram), tetapi secara ekonomis, berdasarkan asumsi saat ini, ketebalan 0.46 mm lebih menguntungkan untuk diproduksi (waktu siklus 4.5-4.6 detik dan berat produk 3.8 gram). Produk Jelly Cup teroptimasi menjadi Thin Wall Product dengan flow length/wall thickness ratio (111) terbesar 128.111. Perubahan ketebalan tidak berpengaruh secara signifikan terhadap kekuatan impak produk setelah dilakukan percobaan drop test.

As a packaging, Jelly Cup in principle only for one time use (disposable), so the main factor is the cup has to be as light as possible to save material cost and considering of environment issues suggesting a few possible plastic uses. CAE simulation with mpa (moldflow plastic adviser) software and continued by mpi (moldflow-plastic insight) conducted as early optimization stage and the main parameter is wall thickness which deal with product weight. The target is get wall thickness as thin as possible to be processed at injection molding. Analyze result of computer simulation show the optimum wall thickness for the product of this Jelly Cup 100 ml is 0.5 mm. Next stage is optimization of molding design that consist of 4 main system i.e. cavity, feeding system, cooling system, and ejection system. Experimental process done to validate the optimization. Method that used in this experiment is trial and error of injection molding of Jelly Cup 100 ml with 3 kind of wall thickness i.e. 0.42, 0.46, and 0.50 mm. These trials used practical process parameters as close as the real production condition. The result shows Jelly Cup with wall thickness 0.46 and 0.50 mm have possibility to produce. The differences between them are the value of injection pressure and cycle time. After analysis and discussion, wall thickness 0.50 mm is the ideal wall thickness and very close to simulation result (cycle time is 4.1-4.2 s and product weight is 4.1 g), but according to economic calculation, with recent assuming, show the advantage to produce 0.46 mm product slightly higher than another (cycle time is 4.54.6 s and product weight is 3.8 g). Jelly Cup product optimized to thin wall product with flow length 1 wall thickness ratio (1J) 128.111. The drop test result shows the changes of thickness not significant for drop impact resistance."
Depok: Fakultas Teknik Universitas Indonesia, 2005
T16152
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>