Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 185179 dokumen yang sesuai dengan query
cover
Riza Agung Nugraha
"ABSTRAK
Dye Sensitized Solar Cell DSSC berpotensi menjadi sumber energi alternatif yang menjanjikan di masa yang akan datang. Penghematan yang signifikan dalam proses produksi DSSC dapat diperoleh dengan mengintegrasikan sistem DSSC kepada material bangunan secara langsung pada bangunan karena dapat menghemat biaya berupa struktur penyangga tambahan dan proses produksi dapat dilakukan secara roll to roll pada produksi logam lembaran. Namun, penggunaan logam sebagai substrat untuk DSSC terkendala oleh proses korosi yang diakibatkan oleh larutan elektrolit berbasis iodide I- /tri-iodide I3- . Dalam penelitian ini diusulkan penggunaan komposit nano Polyaniline PANi dan Oksida Grafena Tereduksi rGO sebagai pelapis proteksi korosi dan katalis pada Katoda DSSC dengan substrat baja karbon AISI 1086. Grafena rGO disintesis dengan mengoksidasi grafit menjadi oksida grafit. Oksida grafit kemudian diultrasonikasi sehingga terkelupas menjadi Oksida Grafena GO . GO kemudian direduksi sehingga dihasilkan Oksida Grafena Tereduksi rGO . Komposit PANi/rGO disintesis dengan metode polimerisasi in situ dari monomer aniline dengan ditambahkan konsentrasi rGO sebesar 0, 1, 2, 4, 8 wt . Komposit yang dihasilkan kemudian didispersikan dalam etanol untuk kemudian dideposisi dengan cara drop casting menggunakan syringe pada substrat baja karbon AISI 1086. Karakterisasi sampel PANi/rGO yang dilakukan antara lain identifikasi ukuran kristalit bahan menggunakan XRD, gugus fungsi yang terbentuk menggunakan FTIR dan morfologi permukaan menggunakan SEM. Hasil karakterisasi sampel membuktikan bahwa sintesis material komposit nano PANi/rGO telah berhasil dilakukan. Pengujian korosi menggunakan metode polarisasi potensiodinamik dan EIS membuktikan bahwa terjadi penurunan laju korosi pada baja sebanding dengan penambahan konsentrasi rGO pada komposit nano PANi/rGO. Laju korosi paling rendah didapatkan pada konsentrasi rGO paling tinggi, yaitu PANi/rGO 8wt dengan laju korosi CR sebesar 0,2 mm/tahun dan nilai efisiensi proteksi sebesar 80,3 . Setelah itu, dilakukan fabrikasi prototipe DSSC dengan menggunakan katoda PANi/rGO yang dideposisikan pada substrat baja karbon AISI 1086 dan anoda standar menggunakan semikonduktor oksida TiO2 Degussa P25. Pengujian performa DSSC dengan menggunakan intesitas cahaya 100 mW/cm2 pada suhu 27?C membuktikan bahwa komposit PANi/rGO dapat digunakan sebagai alternatif katalis pengganti Platina untuk elektrolit redoks berbasis iodide I- /tri-iodide I3- pada aplikasi sel surya DSSC. Nilai efisiensi konversi daya ? paling tinggi dihasilkan oleh prototipe sel surya DSSC dengan material PANi/rGO 4wt sebagai katalis dengan nilai efisiensi konversi daya ? sebesar 5,38.

ABSTRACT
Dye sensitized Solar Cell DSSC would likely become a promising energy alternative source in the future. Significant cost reduction in the production process can be obtained by integrating the DSSC systems to building materials directly because it can save costs of additional support structure and the production process can be done in a roll to roll sheet metal production. However, the use of metal as a substrate is constrained by the process of corrosion caused by the electrolyte solution based used in DSSC such as iodide I tri iodide I3 . In this study, we propose utilization of Polyaniline PANi and Reduced Graphene Oxide rGO nanocomposite as protective coating and at the same time a catalyst for DSSC rsquo s counter electrode with carbon steel AISI 1086 as the substrates. Graphene rGO was synthesized by oxidizing graphite into graphite oxide. Graphite oxide was then ultrasonicated and as the result will exfoliate into Graphene Oxide GO . GO was reduced resulting in Reduced Graphene Oxide rGO . PANi RGO nanocomposite was synthesized through in situ polymerization of aniline monomer at addition of rGO with concentrations of 0, 1, 2, 4, 8 wt . The resulting composite was dispersed in ethanol and was drop casted using syringe into carbon steel plate AISI 1086. The sample was then ready for characterization including crystallite size using XRD, functional groups using FTIR and surface morphology using SEM. The result of sample characterization proves that the synthesis of PANi rGO nanocomposite has been successfully performed. Corrosion test performed using potentiodynamic polarization and EIS measurements revealed that the decreasing corrosion rates in steels was proportional to the addition of rGO concentrations to PANi rGO nanocomposites. The lowest corrosion rate was obtained at the highest rGO composition, i.e. PANi rGO 8 wt with corrosion rate CR of 0.2 mm year and the protection efficiency value of 80.3 . Thereafter, DSSC prototype fabrication was performed using PANi rGO nanocomposites deposited onto carbon steel plate AISI 1086 as counter electrode and a standard photo anode using TiO2 semiconductor oxide Degussa P25. DSSC performance tested under light intensity of 100 mW cm2 and temperature 27 C proved that PANi rGO composite could be used as an alternative catalyst for iodide I tri iodide I3 based redox electrolyte in DSSC solar cell applications, in replacement of platinum. The highest power conversion efficiency of 5.38 was obtained with PANi rGO 4 wt as catalyst."
2018
T49063
UI - Tesis Membership  Universitas Indonesia Library
cover
Rini Asti Suryani
"ABSTRAK
Grafena adalah alotrop karbon yang kristalnya tersusun secara heksagonal dengan hibridisasi sp2. Grafena dan nanokompositnya dengan berbagai logam transisi telah dikembangkan untuk berbagai aplikasi, mulai dari sensor, elektronik, energi hingga bidang biomedis. Selain itu, nanokomposit berbasis graphene juga banyak dikembangkan untuk aplikasinya sebagai katalis karena memiliki luas permukaan yang besar serta memiliki konduktivitas dan stabilitas yang baik. Pada penelitian ini, graphene oxide (rGO) tereduksi yang dimodifikasi dengan nanopartikel Ag disintesis sebagai katalis heterogen dalam reaksi karboksilasi antara fenilacetylene dan CO2. Karakterisasi nanokomposit AgNPs / graphene oxide tereduksi dilakukan dengan menggunakan Scanning Electron Microscopy - Spektroskopi sinar-X dispersif energi, Fourier Transform Infra Red, X-ray Powder Diffraction dan UV-Vis Spectroscopy. Berdasarkan hasil UV-Vis didapatkan puncak absorbansi pada panjang gelombang 253 nm yang menunjukkan adanya restorasi konjugasi elektronik pada permukaan rGO. Spektrum FTIR dari nanokomposit AgNPs / rGO menunjukkan penurunan intensitas absorbansi gugus hidroksil dan keton dibandingkan dengan spektrum oksida graphene, menunjukkan bahwa reduksi gugus fungsi yang mengandung oksigen telah berhasil dilakukan dengan menggunakan urea. Hasil XRD menunjukkan intensitas puncak pada 38.14o (111), 44.27o (200), 64.43o (220), 77.38o (311), menunjukkan bahwa nanopartikel Ag yang terbentuk memiliki kristalografi fcc. Hasil SEM-EDX menunjukkan nanopartikel Ag tersebar di permukaan rGO dengan persentase massa 38,57%. Reaksi karboksilasi dilakukan dalam reaktor batch dengan variasi basa dan suhu. Berdasarkan hasil analisis produk menggunakan HPLC, luas produk utama terbesar yang diperoleh dari reaksi menggunakan basa Na2CO3 adalah 204,1361 dan suhu 50oC adalah 128,2214. Sedangkan luas produk minor terbesar diperoleh dari reaksi menggunakan basa Cs2CO3 sebesar 6,2175 dan suhu 80 oC sebesar 18,3130.
ABSTRACT
Graphene is an allotrope of carbon whose crystals are arranged hexagonally by sp2 hybridization. Graphene and its nanocomposites with various transition metals have been developed for a wide range of applications, from sensors, electronics, energy to biomedical fields. In addition, graphene-based nanocomposites have also been widely developed for applications as catalysts because they have a large surface area and have good conductivity and stability. In this study, reduced graphene oxide (rGO) modified with Ag nanoparticles was synthesized as a heterogeneous catalyst in the carboxylation reaction between phenylacetylene and CO2. Characterization of reduced AgNPs / graphene oxide nanocomposites was performed using Scanning Electron Microscopy - Energy dispersive X-ray spectroscopy, Fourier Transform Infra Red, X-ray Powder Diffraction and UV-Vis Spectroscopy. Based on the UV-Vis results, the absorbance peak was obtained at a wavelength of 253 nm which indicated the presence of electronic conjugation restoration on the rGO surface. The FTIR spectrum of the AgNPs/rGO nanocomposite showed a decrease in the absorbance intensity of the hydroxyl and ketone groups compared to the graphene oxide spectrum, indicating that the reduction of oxygen-containing functional groups was successfully carried out using urea. XRD results showed peak intensities at 38.14o (111), 44.27o (200), 64.43o (220), 77.38o (311), indicating that the Ag nanoparticles formed had fcc crystallography. The SEM-EDX results showed that Ag nanoparticles were scattered on the surface of rGO with a mass percentage of 38.57%. The carboxylation reaction was carried out in a batch reactor with variations in base and temperature. Based on the results of product analysis using HPLC, the largest area of ​​the main product obtained from the reaction using the base Na2CO3 was 204.1361 and a temperature of 50oC was 128.2214. Meanwhile, the largest minor product area was obtained from the reaction using the base Cs2CO3 of 6.2175 and a temperature of 80 oC of 18.3130."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khalisha Rizqi Olga Pramono
"Sel surya merupakan alat elektronik yang dapat mengubah energi cahaya menjadi energi listrik secara langsung dengan melalui proses fotovoltaik. Salah satu jenis sel surya yang sedang banyak dikembangkan adalah sel surya perovskite (perovskite solar cell, PSC). Sel surya perovskite membutuhkan senyawa semikonduktor yang tepat agar cahaya dapat terabsorp secara maksimal. Salah satu senyawa semikonduktor ini adalah ZnO. Namun, penggabungan antara logam oksida dan pervoskite pada interface merupakan faktor yang dapat menghambat transport muatan dan akan mempengaruhi efisiensi dari sel surya. Saat ini, komposit bahan nano dengan grafena dan turunannya menjadi perhatian karena dapat memperbaiki efisiensi dari sel surya perovskite. Salah satu turunan dari grafena adalah oksida grafena tereduksi (Reduced Graphene Oxide, rGO). rGO dapat disintesis dari tanaman bambu, yaitu tanaman yang dapat memberikan sumber energi terbarukan. Electron Transport Layer (ETL) merupakan lapisan yang berperan penting dalam ekstraksi dan transportasi muatan elektron pada sel surya perovskite. Penelitian ini dilakukan agar dapat mengetahui karakteristik dan kualitas dari rGO yang disintesis dari tanaman bambu, serta kinerjanya sebagai ETL pada sel surya perovskite ZnO/rGO.

Solar cell is an electronic device that converts light energy directly into electrical energy through a photovoltaic process. Perovskite solar cell is one of the types of solar cell that has been developed recently.  Perovskite solar cell needs a right semiconductor compound to make sure that the light can be absorbed maximally. One of the semiconductor compounds is ZnO. However, the combination of metal oxide and perovskite on the interface is a factor that can hinder the charge transport and will affect the power conversion efficiency (PCE). Nanocomposites with graphene and its derivatives are becoming an interest because they can improve the solar cell’s efficiency. One of the graphene’s derivatives is reduced graphene oxide (rGO). rGO can be synthesized from bamboo, a plant that can produce a renewable energy. Electron Transport Layer (ETL) is a layer that plays a crucial role in extracting and transporting photogenerated electron carriers in perovskite solar cell. This research is done to know the characteristic and quality from the rGO that is synthesized from bamboo and its performance as an ETL in perovskite solar cell ZnO/rGO. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Daulay, Syukur
"Sel surya tersensitasi zat pewarna, (dye-sensitized solar cell, DSSC) merupakan salah satu sel surya yang mudah dan murah dalam proses pembuatannya dan memiliki prospek untuk menjadi pengganti sel surya generasi pertama. Namun demikian, DSSC memiliki efisiensi yang rendah, karena terjadi rekombinasi elektron yang disebabkan konduktivitas rendah dan penyerapan TiO2.
Pada penelitian ini, pengaruh Grafin oksida tereduksi (reduced graphene oxide, rGO) pada performa DSSC telah diinvestigasi. Material rGO diproduksi dengan menggunakan metode Hummer melalui oksidasi dengan Kalium Permanganat (KMnO4) dan kemudian reduksi dengan Hidrazyne Hydrate. Hasil fabrikasi berupa Grafin Oksida (GO) dan rGO dikarakterisasi dengan XRD, SEM, UV-Vis dan FTIR sedangkan performa sel surya diukur dengan solar cell simulator.
Hasil XRD menunjukkan bahwa telah terjadi pergeseran puncak difraksi dari sudut 2θ sebesar 26.50° menjadi 10.4° yang menunjukkan adanya eksfoliasi grafit. Dan terjadi pergeseran kembali ke posisi semula ketika GO menjadi rGO yang mengindikasikan adanya kontraksi kembali.
Hasil SEM menunjukkan bahwa telah terjadi perubahan bentuk fisis dari grafit, GO dan rGO. Data FTIR menunjukkan bahwa puncak-puncak gugus OH mengalami peningkatan saat oksidasi dan penurunan saat reduksi yang menunjukkan adanya reaksi oksidasi dan reduksi yang efektif. Dari data DRS ditemukan energi celah pita grafit, GO dan rGO berturut-turut 3.4 , 3.7 dan 3.95 eV sementara energi celah pita untuk komposit nano sekitar 3.38-3.48 eV.
Efisiensi yang diperoleh untuk komposit dengan persentase 0, 1, 2, 3, 4 dan 5 wt% masing-masing 1.45, 0.67, 0.91, 0.09, 0.82 dan 0.46 %. Sementara itu untuk lapisan didapatkan hasil untuk 0, 1, 2, 3, 4 dan 5 lapis rGO adalah 1.39, 1.13, 0.801, 0.05, 1.05 dan 0.853%. Penurunan efisiensi ini diakibatkan selisih energi LUMO pewarna dan pita konduksi semikonduktor kecil sehingga masih banyak rekombinasi elektron.

Dye-sensitized solar cell (DSSC) is a ease and low cost fabrication and has high possibility to become substitution for the first generation of solar cell. However, DSSC has low efficiency that caused by electron recombination due to low conductivity and high absorbance of TiO2.
This research has investigated the effect of reduced graphene oxide (rGO) to the performance of DSSC. The rGO synthesized using Hummer's method that routed by oxidation by potassium permanganate (KMnO4) and reduction Hydrazine Hydrate.  Graphene Oxide (GO) and rGO as result of fabrication are characterized using XRD, SEM, UV-Vis and FTIR and solar cell's performance is measured by solar cell simulator.
XRD result shows the displacement of diffraction peak from angle 2θ of 26.50° become 10.4° that indicate the graphite exfoliation. Then it returned to the initial position that indicate contraction.
SEM's result showed the form of graphite, GO and rGO. FTIR's data showed the peaks of OH increase when it was oxidized and decreased when it was reduced indicate the oxidation and reduction processes were effective. Bandgap of graphite, GO, rGO is found from DRS's data that gained results of  3.4 , 3.7 and 3.95 eV consecutively whereas bandgap for nanocomposite about 3.38-3.48 eV. The efficiencies for DSSC with nanocomposite photoanode that have percentage of 0, 1, 2, 3, 4 are 5 wt% 1.45, 0.67, 0.91, 0.09, 0.82 and 0.46 % consecutively.
The results for layers form one for 0, 1, 2, 3, 4 and 5-layers number of rGO are 1.39, 1.13, 0.801, 0.05, 1.05 and 0.853% consecutively. The decreasing of efficiencies are caused by the small difference of LUMO energy of dye and conduction band of semiconductor resulted much electron recombination.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53052
UI - Tesis Open  Universitas Indonesia Library
cover
Istiara Rizqillah Hanifah
"Bambu merupakan sumber daya alam terbarukan yang dapat menyediakan banyak hal seperti sumber energi apabila siklus penanaman dan penggunaannya dijadwalkan dengan benar. Dalam penelitian ini, bambu digunakan sebagai sumber daya alam untuk proses preparasi grafit yang selanjutnya digunakan dalam sintesis oksida grafena tereduksi dengan metode hummer. Metode Hummer mengoksidasi grafit dengan cara mereaksikan grafit dengan kalium permanganat, sodium nitrat dalam larutan asam. Oksida grafena tereduksi (rGO) ini telah menarik minat yang besar karena banyaknya penggunaannya dalam berbagai aplikasi. Salah satu aplikasinya adalah lapisan anti korosi yang sangat baik untuk baja ringan yang digunakan dalam air laut. Dalam penelitian ini, hasil sintesis oksida grafena tereduksi dikarakterisasi menggunakan difraksi sinar-X (XRD) untuk menganalisis struktur kristal dan mikroskop elektron (SEM) untuk melihat morfologi permukaan. Selanjutnya, kinerja oksida grafena tereduksi sebagai pelapis anti korosi pada baja ST41 di lingkungan air laut diuji menggunakan uji polarisasi dan uji kehilangan berat. Hasil uji polarisasi pada baja ST41 yang dilapisi oksida grafena tereduksi hasil sintesis memiliki densitas arus korosi lebih rendah, icor, 3,08960 µA/cm2 jika dibandingkan dengan baja ST41 yang tidak dilapisi dengan densitas arus korosi, icor, 10,4270 µA/cm2. Ini menunjukkan bahwa lapisan rGO pada baja ST41 meningkatkan ketahanan korosi. Efisiensi proteksi korosi dari baja ST41 yang dilapisi rGO hasil sintesis adalah 70,36%, dan laju korosinya adalah 0,03589 mm/tahun dibandingkan dengan 0,12110 mm/tahun untuk baja ST41 tanpa dilapisi rGO. Hasil uji kehilangan berat menunjukan efisiensi proteksi baja ST41 dilapisi rGO hasil sintesis adalah 70,73%.

Bamboo is a renewable natural resource that can provide many things such as source of energy, if the plantation cycles and its usage is properly managed. In this research, the use of bamboo as a natural resource for graphite preparation process, which then can be used as a precursor for synthesizing reduced graphene oxide (rGO) via Hummer’s method. The Hummer’s method oxidizes graphite by reacting graphite with potassium permanganate and sodium nitrate in an acid solution. This rGO has attracted intense interest for its many uses in various applications. One of the applications is its excellent potential anti-corrosion prevention for mild steel used in saline water. In this work, the results of reduced graphene synthesis were characterized using X-ray diffraction (XRD) for crystal structure analysis and electron microscopy (SEM) for surface morphology. Furthermore, the performance of reduced graphene as an anti-corrosion coating on mild steel ST41 in the seawater environment was tested using electrochemical measurement and weight loss. Reduced graphene oxide (rGO) coated on ST41 mild steel showed much lower corrosion current, Icorr, 3.08960 µA/cm2, when compared to 10.4270 µA/cm2 for bare ST41 mild steel indicating that rGO film on ST41 mild steel exhibits enhanced corrosion resistance. The corrosion protection efficiency of synthetic rGO-coated ST41 mild steel was 70.36%, and the corrosion rate was 0,03589 mm/year compared to 0,12110 mm/year for ST41 mild steel without rGO-coated. The results of the weight loss test showed that the protection efficiency of rGO-coated ST41 mild steel was 70.73%. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ida Bagus Gede Prabawanta
"Grafena merupakan bahan dua dimensi dengan struktur lembaran tipis yang tersusun dari atom karbon yang membentuk ikatan sp2 dan skisi kisi kristalnya yang membentuk bentuk sarang lebah. Grafena oksida tereduksi (rGO) merupakan bahan turunan dari grafena yang masih memiliki gugus fungsi memgandung oksigen. Luas permukaan yang tinggi, konduktivitas termal dan elektrik yang tinggi, serta sifat mekanik yang baik merupakan karakteritik yang dimiliki oleh grafena oksida tereduksi yang mendukung pengaplikasiannya sebagai penyangga katalis. Pada penelitian ini, telah berhasil disintesis nanopartikel Nikel/grafena oksida tereduksi dengan metode hidrotermal in-situ menggunakan grafena oksida sebagai prekursor yang diaplikasi sebagai katalis konversi CO2 menjadi CH4. NiNPs/rGO hasil sintesis dikarakterisasi dengan menggunakan spektrofotometer UV-Vis, Fourier Transform Infrared (FTIR), Difraksi X-Ray (XRD), Scanning Electron Microscope (SEM), dan Energy-Dispersive X-Ray Spectroscopy (EDX). Karakterisasi spektrofotometer UV-Vis menunjukkan NiNPs/rGO memberikan serapan pada 260 nm yang menunjukkan adanya perubahan dari puncak serapan GO (230 nm). karakterisasi FTIR pada NiNPs/rGO menunjukkan penurunan absorbansi dari puncak gugus fungsi yang mengandung oksigen yang sebelumnya termasuk dalam GO, selain itu menghilangkan puncak serapan pada 1736 cm-1 (C = O) pada NiNPs/rGO juga menandakan bahwa proses reduksi GO menjadi rGO telah berhasil. Terbentuknya nanopartikel Nikel pada permukaan rGO dibuktikan dari hasil karakterisasi EDX (% massa) yang menunjukkan adanya tidak C (35,59%), O (9,87%), dan Ni (54,55%) pada permukaan NiNPs/rGO.

Graphene is a two-dimensional material with a thin sheet structure composed of carbon atoms that forms sp2 bonds and crystal lattice schemes that form honeycomb shapes. Reduced graphene oxide (rGO) is a derivative of graphene which still has a functional group containing oxygen. High surface area, high thermal and electrical conductivity, and good mechanical properties are the characteristics possessed by the reduced graphene oxide which supports its application as a catalyst support. In this research, it has been successfully synthesized the reduced Nickel/graphene oxide nanoparticles by in-situ hydrothermal method using graphene oxide as a precursor that is applied as a catalyst to convert CO2 to CH4. Synthesized NiNPs/rGOs were characterized using UV-Vis spectrophotometers, Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX). The UV-Vis spectrophotometer characterization showed NiNPs/rGO gave absorption at 260 nm which showed a change from GO absorption peak (230 nm). FTIR characterization of NiNPs/rGO shows a decrease in absorbance from the peak of oxygen-containing functional groups that were previously included in GO, besides eliminating the absorption peak at 1736 cm-1 (C = O) on NiNPs/rGO also indicates that the process of reducing GO to rGO has been it works. The formation of Nickel nanoparticles on the surface of rGO is evidenced from the results of the characterization of EDX (mass%) which shows the absence of C (35.59%), O (9.87%), and Ni (54.55%) on the surface of NiNPs/rGO."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indy Ramadhani
"Saat ini penggunaan grafena dan senyawa turunannya berpotensi besar dalam berbagai aplikasi termasuk sebagai pembersih tumpahan minyak. Dalam penelitian ini dilakukan sintesis grafena oksida tereduksi (rGO) dari pensil dengan pereduksi perasan lemon. Selanjutnya rGO digunakan pada pelapisan spons poliuretan (PU) yang menghasilkan spons rGO/PU sebagai adsorben pembersih tumpahan minyak. GO disintesis dengan menggunakan metode Hummers termodifikasi untuk mendapatkan grafena oksida yang kemudian direduksi menggunakan reduktor perasan lemon. Pada penelitian ini dilakukan variasi konsentrasi perasan lemon (rGO 1:2, rGO 1:2,5, rGO 1:3) dan konsentrasi rGO (10 mg/ml, 12 mg/ml, 15 mg/ml) pada proses penyerapan rGO oleh spons PU. Hasil XRD menunjukkan bahwa lapisan grafit telah terkelupas dari 109 lapisan menjadi 2-4 lapisan. Konsentrasi perasan lemon pada proses reduksi mempengaruhi kandungan unsur C dan kandungan unsur O yang dihasilkan. Kandungan unsur C pada rGO yang dihasilkan berkisar antara 83,76 – 85,33% dan kandungan unsur O berkisar antara 8,62 – 12,01%. Dari ketiga variasi yang dilakukan yaitu rGO 1:2; rGO 1:2,5; dan rGO 1:3, hasil rGO yang paling baik berdasarkan kandungan unsur C dan O adalah rGO 1:3 dengan jumlah lapisan 2, kandungan unsur C 85,33% dan kandungan unsur O 8,62%. Spons rGO/PU yang telah disintesis berhasil membersihkan tumpahan minyak selama 10 detik dengan efisiensi sebesar 84,00%, 84,60%, dan 96,80%. Perbedaan nilai efisiensi tersebut karena adanya pengaruh konsentrasi rGO dalam penyerapan rGO ke spons PU. Efisiensi dalam membersihkan tumpahan minyak yang tertinggi dimiliki oleh spons rGO/PU 15 mg/ml dengan nilai sebesar 96,80%
Today the use of Graphene and its derivatives has great potential in many applications including as an oil spills cleanup. In this study a synthesis of reduced graphene oxide (rGO) from pencil by reducing graphene oxide with lemon juice. Furthermore, rGO is used for coating polyurethane sponges (PU) which produce rGO/PU sponges as oil spill cleanup adsorbents. GO was synthesized by using the modified Hummers method to obtain graphene oxide, then reduced by lemon juice. In this study, variation of lemon juice concentration (rGO 1:2, rGO 1:2,5, rGO 1:3) and the concentration of rGO (10 mg/ml, 12 mg/ml, 15 mg/ml) in the process of absorption of rGO by PU sponge. The XRD results show that the graphite layer has peeled from 109 layers into 2-4 layers. Concentration of lemon juice in the reduction process affects on the C content and O content produced. The content of C in the rGO ranged from 83,76 – 85,33% and the content of O ranged from 8,62 – 12,01%. Of the three variations carried out, namely rGO 1:2; rGO 1:2,5; and rGO 1:3, the best rGO results are based on the number of peeled layers, the content of C and O is rGO 1:3 with the number of layers 2, the content C 85,33% and O 8.62%. The rGO/PU sponge synthesized successfully cleanup the oil spill for 10 seconds with an efficiency of 84,00%, 84,60%, and 96,80%. The difference in the efficiency value is due to the influence of the concentration of rGO in the absorption of rGO into the PU sponge. The highest efficiency in cleanup the oil spill is owned by rGO/PU sponge 10 mg/ml with a value of 96.80%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Saepudin Wahab
"Persyaratan untuk sumber energi terbarukan terus dikembangkan untuk menggantikan bahan bakar fosil seperti minyak bumi, batu bara, dan gas. Salah satu sumber energi terbarukan adalah sinar matahari, yang sampai sekarang terus mengembangkan penggunaannya sebagai sel surya. Pengembangan sel surya intensif adalah sel surya peka warna (DSSC), jenis sel surya fotoelektrokimia yang menggunakan pewarna untuk mentransfer sinar matahari ke energi listrik. DSSC pertama kali diperkenalkan pada tahun 1991 oleh ilmuwan Brian O'Reagan dan Michael Gratzel. DSSC terdiri dari oksida konduktif transparan (TCO), semikonduktor (termasuk nanometer ZnO), pewarna, elektrolit, dan penghitung elektroda. Berbagai perbaikan telah dikembangkan untuk meningkatkan nilai efisiensi konversi daya DSSC (PCE). Bahan yang diharapkan dapat meningkatkan nilai efisiensi sel surya adalah berkurangnya graphene oxide (rGO).
Dalam penelitian ini, rGO digunakan dalam struktur DSSC untuk: (i) peningkatan pewarna, (ii) peningkatan photoanode, dan (iii) peningkatan counter elektroda. Sebagai patokan (standar) digunakan struktur DSSC tanpa rGO. RGO diproduksi dari sintesis graphene oxide (GO) dengan metode Hummers, sedangkan ZnO nanorod dihasilkan dari sintesis pengendapan bath kimia (CBD). ZnO, GO, dan rGO dikarakterisasi dengan SEM, XRD, spektroskopi UV-Vis, dan spektroskopi FTIR, dan mikroskop optik. Sementara pengujian PCE DSSC dilakukan oleh alat simulator matahari. Dari hasil pengujian PCE, nilai efisiensi tertinggi dari setiap peningkatan (i), (ii), dan (iii) masing-masing adalah 0,02%, 0,0025%, dan 0,1%. Nilai PCE tertinggi dari semua variasi peningkatan diperoleh dari peningkatan counter electrode sebesar 0,1%. Sedangkan nilai PCE standar DSSC adalah 0,005%.

The requirements for renewable energy sources continue to be developed for replacing fossil fuels such as petroleum, coal and gas. One of the renewable energy sources is sunlight, which until now continues to develop its use as solar cells. The intensive solar cell development is dye sensitized solar cell (DSSC), a type of photoelectrochemical solar cell that uses dye to transfer sunlight to electrical energy. DSSC was first introduced in 1991 by scientists Brian O'Reagan and Michael Gratzel. DSSC is composed of transparent conductive oxide (TCO), semiconductors (including ZnO nanorods), dyes, electrolytes, and electrode counters. Various improvements have been developed to increase the value of DSSC power conversion efficiency (PCE). The material that is expected to increase the value of solar cell efficiency is reduced graphene oxide (rGO).
In this study, rGO was used in the DSSC structure for: (i) dye improvement, (ii) photoanode improvement, and (iii) counter electrode improvement. As a benchmark (standard) was used a DSSC structure without rGO. RGO was produced from the synthesis of graphene oxide (GO) with the Hummers method, while ZnO nanorods were produced from chemical bath deposition (CBD) synthesis. ZnO, GO, and rGO were characterized by SEM, XRD, UV-Vis spectroscopy, and FTIR spectroscopy, and optical microscope. While PCE DSSC testing was carried out by a sun simulator tool. From the results of PCE testing, the highest efficiency values ​​of each improvement (i), (ii), and (iii) were 0.02%, 0.0025%, and 0.1% respectively. The highest value of PCE from all variations of improvement was obtained from the improvement of counter electrode by 0.1%. While the standard PCE value of DSSC was 0.005%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54353
UI - Tesis Membership  Universitas Indonesia Library
cover
Nur Alfin Hidayati
"

Saat ini penggunaan grafena dan senyawa turunannya berpotensi besar dalam berbagai aplikasi, termasuk sebagai pembersih tumpahan minyak. Dalam penelitian ini dilakukan sintesis grafena oksida tereduksi (rGO) dari limbah grafit batu baterai dengan pereduksi asam askorbat. Selanjutnya rGO digunakan pada pelapisan spons poliuretan (PU) yang menghasilkan spons rGO/PU sebagai adsorben pembersih tumpahan minyak. rGO disintesis dengan menggunakan metode Hummers termodifikasi untuk mendapatkan grafena oksida yang kemudian direduksi menggunakan reduktor asam askorbat. Pada penelitian ini dilakukan variasi konsentrasi asam askorbat (rGO 1:1,  rGO 2:3,rGO 1:2) dan konsentrasi rGO (3 mg/ml, 5 mg/ml, 10 mg/ml) pada proses penyerapan rGO oleh spons PU. Hasil XRD menunjukkan bahwa lapisan grafit telah terkelupas dari 81 lapisan menjadi 2-5 lapisan. Kandungan unsur C pada rGO yang dihasilkan berkisar antara 82,81-84,38%, dan kandungan unsur O yang dihasilkan 8,60-14,85%. Konsentrasi asam askorbat pada proses reduksi mempengaruhi jumlah lapisan yang terkelupas, kandungan unsur C dan kandungan unsur O yang dihasilkan. Dari ketiga variasi yang dilakukan yaitu rGO 1:1, rGO 2:3, dan rGO 1:2, hasil rGO yang paling baik berdasarkan jumlah lapisan yang terkelupas, kandungan unsur C dan O adalah rGO 1:2 dengan jumlah lapisan 2, kandungan unsur C 84,38% dan kandungan unsur O  8,60%. Spons rGO/PU yang telah disintesis berhasil membersihkan tumpahan minyak selama 10 detik dengan efisiensi sebesar 79,25%, 79,91%, dan 95,09%. Perbedaan nilai efisiensi tersebut karena adanya pengaruh konsentrasi rGO dalam penyerapan rGO ke spons PU. Efisiensi dalam membersihkan tumpahan minyak yang tertinggi dimiliki oleh spons rGO/PU 10 mg/ml dengan nilai sebesar 95,09%.


Today the use of Graphene and its derivatives has great potential in many applications, including as an oil spills cleanup. In this study a synthesis of reduced graphene oxide (rGO) from graphite waste batteries was carried out by reducing graphene oxide with ascorbic acid. Furthermore, rGO is used for coating polyurethane sponges (PU) which produce rGO/PU sponges as oil spill cleanup adsorbents. rGO was synthesized by using the modified Hummers method to obtain graphene oxide, then reduced by ascorbic acid. In this study variations in ascorbic acid concentration (rGO 1:1, rGO 2:3, rGO 1:2) and the concentration of rGO (3 mg/ml, 5 mg/ml, 10 mg/ml) in the process of absorption of rGO by PU sponge. The XRD results show that the graphite layer has peeled from 81 layers into 2-5 layers. The content of C in the rGO ranged from 82.81 - 84.38%, and the content of O was 8,60 - 14,85%. Ascorbic acid concentration in the reduction process affects the number of layers that are peeled off, the C content and the O content produced. Of the three variations carried out, namely rGO 1:1, rGO 2:3, and rGO 1:2, the best rGO results are based on the number of peeled layers, the content of C and O is rGO 1:2 with the number of layers 2, the content C 84.38% and O 8.60%. The rGO/PU sponge synthesized successfully cleanup the oil spill for 10 seconds with an efficiency of 79.25%, 79.91% and 95.09%. The difference in the efficiency value is due to the influence of the concentration of rGO in the absorption of rGO into the PU sponge. The highest efficiency in cleanup the oil spill is owned by rGO/PU sponge 10 mg/ml with a value of 95.09%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rheza Rahadi Akbar
"Sel Surya Perovskite (PSC) adalah generasi keempat dari sel surya yang mengandung senyawa berstruktur perovskite. Senyawa ini umumnya merupakan gabungan dari senyawa organic-anorganik dari Timbal (Pb) yang berperan sebagai lapisan aktif penyerap cahaya. PSC memiliki sifat fotovoltaik yang sangat baik seperti penyerapan cahaya yang sangat baik dan mobilitas carrier yang tinggi. Namun, efisiensi dari PSC dan juga kualitas dari lapisan perovskite yang terbentuk menjadi keterbatasan utama dari sel surya ini. Dengan menambahkan oksida grafena tereduksi (rGO), diharapkan rekombinasi muatan pada batas butir yang ada dapat berkurang dan dapat meningkatkan efisiensi dengan signifikan. Selain itu substitusi parsial dari lapisan perovskite PbI2 dengan ZnCl2 juga diketahui dapat meningkatkan perpindahan elektron dari sel surya, yang menghasilkan efisiensi PSC yang lebih tinggi. PSC ini pada umumnya diproduksi pada lingkungan yang inert, namun pada penelitian ini, penggunaan rGO sebagai penstabil pada lapisan kompak ZnO nanorod akan diproduksi pada lingkungan ambien. Pengaruh dari penambahan rGO sebagai penstabil ini berhasil meningkatkan efisiensi dari sel surya hingga lebih dari 2x lipat.

Perovskite solar cell (PSC) is a fourth-generation solar cell containing perovskite structured compound, mainly from organic-anorganic hybrid of lead. This perovskite acts as an active layer that collects the light from the solar. PSC has a very good photovoltaic properties such good light absorption and high carrier mobility. However, the overall efficiency of PSC and the quality of the perovskite layer formed are the primary limitation of this solar cell. Reduced graphene oxide (rGO) is expected to to increase the efficiency of the solar cell. By adding rGO to the solar cell, charge recombination in grain boundaries can be reduced and thus increase the efficiency. Substituting the perovskite layer from lead iiodide (PbI2) to zinc chloride (ZnCl2) is one of the way to increase the electron transport from the solar cell, which means a higher overall efficiency from the PSC. The PSC is normally manufactured under inert environment, but in this research the addition of rGO to zinc oxide (ZnO) nanorods was integrated under ambient environment. The addition of rGO as a stabilizer successfully increases the solar cell efficiency by more than two folds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>