Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144808 dokumen yang sesuai dengan query
cover
Andrea Laksmirani Kristina
"Level atau tingkatan antusiasme seseorang merupakan tolak ukur yang penting bagi performa sebuah perusahaan. Level antusiasme tersebut dapat dimodelkan melalui face recognition yang nantinya digunakan sebagai sebuah acuan untuk mengetahui apakah seseorang termasuk dalam kelas antusias, sedikit antusias, atau tidak antusias. Pengklasifikasian face recognition ini berbasis supervised machine learning. Klasifikasi yang digunakan dalam penelitian ini adalah Support Vector Machine SVM dengan metode one-vs-one karena kelas pada data terdiri lebih dari dua kelas. Adapun, dalam upaya peningkatan performa classifier, perlu dilakukan pemilihan fitur. Pemilihan fitur yang digunakan pada skripsi ini adalah Fisher rsquo;s Ratio dan Information Gain. Hasil yang diberikan di akhir tulisan ini berupa perbandingan akurasi dan running time dari klasifikasi SVM tanpa pemilihan fitur dan klasifikasi SVM dengan menggunakan masing-masing pemilihan fitur Fisher rsquo;s Ratio dan Information Gain. Pada klasifikasi SVM tanpa pemilihan fitur, didapatkan akurasi dan running time masing-masing sebesar 80,95238 dan 2,125 detik; dengan pemilihan fitur Fisher rsquo;s Ratio didapatkan akurasi dan running time masing-masing sebesar 88,89 dan 5,47 detik; sedangkan dengan pemilihan fitur Information Gain didapatkan akurasi sebesar 80,95238 dengan running time 1,265625 detik.

Enthusiasm level of a person is an important measurement for a company performance. Enthusiasm level can be modeled by face recognition that in the future will be used as standard to distinguish whether someone is classified as enthusiast, tend to enthusiast, or not at all. This face recognition classification is based on supervised machine learning. This paper uses Support Vector Machine SVM as a classifier with one vsone method because the data consists of more than two classes. In order to increase classifier performance, it is necessary to do feature selection. This paper uses Fisher rsquo s Ratio and Information Gain as feature selection. The conclusion at the end of this research is in the form of comparison of running time and accuracy between SVM classification without feature selection and with Fisher rsquo s Ratio and Information Gain feature selection, respectively. In SVM classification without feature selection, the accuracy and running time are 80,95238 and 2,125 seconds, respectively with Fisher rsquo s Ratio feature selection the accuracy and running time are 88,89 and 5,47 seconds, respectively whilst with Information Gain feature selection the accuracy and running time are 80,95238 , and 1.265625 seconds, respectively.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.

Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Qomariah Abdillah
"Perkembangan teknologi informasi dan komunikasi saat ini menciptakan ketergantungan manusia terhadap teknologi dan internet, salah satunya melalui penggunaan jaringan Wi-Fi. Konektivitas Wi-Fi berkaitan erat dengan Internet of Things (IoT) karena dapat memfasilitasi perangkat IoT untuk saling terhubung dan terkoneksi ke jaringan internet. Namun, peningkatan penggunaan Wi-Fi publik maupun privat rentan terhadap serangan siber. Badan Sandi dan Siber Negara memperkirakan tahun 2024 akan muncul ancaman seperti IoT attacks, distributed denial of services (DDOS), phishing, dan lainnya. Oleh karena itu, perlu adanya upaya antisipatif untuk mengatasi serangan siber. Salah satu upayanya adalah menerapkan intrusion detection system (IDS) untuk memantau lalu lintas jaringan dan memberikan peringatan jika terdapat serangan. Peningkatan kemampuan deteksi IDS dapat dilakukan dengan menerapkan metode machine learning yang mampu mempelajari pola serangan secara efektif dan akurat. Pada penelitian skripsi ini diterapkan metode klasifikasi Support Vector Machine (SVM) Multiclass dengan pendekatan one-vs-one dan one-vs-rest pada dataset Aegean Wi-Fi Intrusion Detection System (AWID2) yang terdiri dari empat kelas dan memiliki dimensi data yang tinggi, yaitu 154 dimensi (fitur). Dalam mengatasi masalah dimensi tinggi tersebut dilakukan seleksi fitur yang bertujuan untuk menghilangkan fitur yang tidak relevan, sehingga fitur hanya terkonsentrasi pada fitur- fitur yang relevan dan informatif dalam menggambarkan serangan. Penelitian skripsi ini menggunakan metode Chi-square dan Information Gain Ratio. Hasil penelitian skripsi ini menunjukkan metode seleksi fitur Chi-square dengan klasifikasi SVM One Vs Rest pada kernel polynomial dengan memilih 54 fitur tertinggi merupakan model terbaik dalam mengklasifikasikan serangan siber pada Wi-Fi dengan nilai accuracy = 98,03%, Precision = 87,24%, Recall = 99,30%, dan F1 score = 91,90%.

Today's advances in information and communication technology create human dependence on technology and the Internet, one of which is through the use of Wi-Fi networks. Wi-fi connectivity is closely related to the Internet of Things (IoT) because it can facilitate IoT devices to interconnect and be connected to the internet network. However, increased use of public and private Wi-FI is vulnerable to cyber attacks. The National Password and Cyber Agency predicts that threats such as IoT attacks, Distributed Denial of Services, phishing, and more will emerge in 2024. Therefore, there is a need for pre-emptive efforts to deal with cyberattacks. One attempt is to implement the Intrusion Detection System (IDS) to monitor network traffic and give warning if there is an attack. Improved IDS detection capabilities can be achieved by applying machine learning methods that can learn patterns of attack effectively and accurately. In this study, the multi-class Support Vector Machine (SVM) classification method was applied to the Aegean Wi-Fi Intrusion Detection System (AWID2) dataset, which consists of four classes and has a high data dimension, namely 154 dimensions. In addressing the high dimension problem, a feature selection was carried out aimed at eliminating irrelevant features, so that the features were concentrated only on the features that are relevant and informative in describing the attack. This study of the script uses the Chi-square method and Information Gain Ratio. The results of this study show that the method of selection of the feature Chi-square with SVM One vs Rest classification on the polynomial kernel by choosing the 54 highest features is the best model in classifying cyber attacks on Wi-Fi with accuracy values = 98.03%, Precision = 87.24%, Recall = 99.30%, and F1 score = 91.90%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvan Aulia Rachman
"Klasifikasi data kanker dilakukan untuk menemukan terapi yang tepat yaitu memaksimalkan efektivitas dan meminimalkan toksisitas. Pada umumnya, data kanker terdiri dari banyak fitur. Namun, tidak semua fitur tersebut informatif. Oleh karena itu, fitur-fitur tersebut akan diseleksi menggunakan metode Fisher's Ratio untuk memilih fitur-fitur yang paling informatif. Fitur-fitur terbaik akan dibentuk data baru. Data, sebelum dan setelah dilakukan pemilihan fitur, diklasifikasi menggunakan metode Fuzzy C-Means. Akurasi dari proses klasifikasinya akan dibandingkan. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh rata-rata akurasi sebesar 82.92%. Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 150 fitur dengan rata-rata akurasi sebesar 89.68%.

Classification of cancer data is done to find the right therapy that maximize efficacy and minimize toxicity. In general, cancer data consists of many features. However, not all of these features are informative. Therefore, these features will be selected using Fisher's Ratio to choose features that are most informative. The best features to be formed new data. Data, before and after feature selection, are classified using Fuzzy C-Means. The accuracy of the classification process will be compared. As a result, without doing feature selection, the accuracy is 82.92%. After doing feature selection, the best accuracy is obtained by using 150 features with the accuracy is 89.68%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arfiani
"Stroke merupakan penyakit yang menempati urutan ketiga sebagai penyebab kematian terbesar di dunia setelah penyakit jantung dan kanker. Stroke juga menduduki posisi pertama sebagai penyakit yang dapat menyebabkan kecacatan, baik ringan maupun berat. Salah satu jenis stroke yang umum terjadi adalah infark serebri. Di Indonesia, jumlah penderita stroke, terutama infark serebri, semakin meningkat setiap tahunnya. Tidak hanya terjadi pada seseorang yang berusia lanjut, namun infark serebri juga dapat terjadi pada seseorang yang masih muda dan produktif. Oleh sebab itu, pendeteksian dini terhadap infark serebri sangatlah penting. Berbagai metode medis selalu digunakan untuk mengklasifikasi infark serebri, namun dalam penelitian ini, akan digunakan metode machine learning. Metode yang diusulkan yaitu Multiple Support Vector Machine dengan Seleksi Fitur Information Gain (MSVM-IG). MSVM-IG merupakan metode baru yang menggunakan support vector sebagai data baru untuk selanjutnya dilakukan seleksi fitur dan evaluasi performa. Data yang digunakan berupa data numerik hasil CT Scan yang diperoleh dari RSUPN dr. Cipto Mangunkusumo, Jakarta. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai nilai akurasi sebesar 88,71%. Sehingga, metode MSVM-IG ini dapat menjadi salah satu alternatif untuk membantu praktisi medis dalam mengklasifikasi infark serebri.

Stroke is a disease that ranks third as the biggest cause of death in the world after heart disease and cancer. Stroke also occupies the first position as a disease that can cause disability, both mild and severe. One type of stroke that is common is cerebral infarction. In Indonesia, the number of stroke patients, especially cerebral infarction, is increasing every year. Not only occurs in someone who is elderly, but cerebral infarction can also occur in someone who is young and productive. Therefore, early detection of cerebral infarction is very important. Various medical methods are always used to classify cerebral infarction, but in this study, machine learning methods would be used. The proposed method is Multiple Support Vector Machine with Information Gain Feature Selection (MSVM-IG). MSVM-IG is a new method that uses support vector as a new dataset, then feature selection step and performance evaluation are performed. The data used in the form of numerical data results of CT scan obtained from RSUPN Dr. Cipto Mangunkusumo, Jakarta. Based on the results, the proposed method is able to achieve an accuracy value of 88.71%. Thus, the MSVM-IG could be an alternative to assist medical practitioners in classifying cerebral infarction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Restu Eka Firdaus
"Sistem pengenalan wajah telah banyak diaplikasikan dengan menggunakan berbagai metode, diantaranya: metode PCA, metode ICA, metode LDA, metode EP, metode EBGM, metode Kernel, metode 3-D Morphable, metode 3-D Face Recognition, metode Bayesian Framework, metode HMM, metode SVM, dan sebagainya.
Pada penelitian ini digunakan metode Local Binary Pattern LBP untuk melakukan ekstraksi fitur citra wajah, serta metode SVM dan KNN untuk mengukur tingkat akurasi sistem pengenalan wajah. Data yang digunakan pada penelitian ini yaitu citra wajah 25 mahasiswa Matematika Universitas Indonesia, masing-masing individu diambil 10 citra wajah yang berbeda terdiri dari 5 citra wajah menggunakan kacamata dan 5 citra lainnya tidak menggunakan kacamata, serta diambil dari sudut yang berlainan.
Berdasarkan pengujian yang telah dilakukan, metode KNN dengan memperoleh tingkat akurasi terbaik yaitu sebesar 96.20 pada iterasi 100 dan 90 data training. Hal ini menunjukkan metode KNN lebih baik dibandingkan dengan metode SVM yang hanya memperoleh tingkat akurasi sebesar 94.80 pada iterasi 100 dan 90 data training.

Face recognition has been widely applied using various methods, that is PCA, ICA, LDA, EP, EBGM, Kernel, 3 D Morphable, 3 D Face Recognition, Bayesian Framework, HMM, SVM, etc.
In this research, the Local Binary Pattern LBP method is used to perform feature extraction of a facial image, and to measure the accuracy level of face recognition used SVM and knn method. The data used in this research are face images of 25 mathematics students of University of Indonesia, each individual took 10 different facial images consisting of 5 face images are using glasses with 5 different angles and 5 other images aren 39 t using glasses that also taken from the same 5 different angles.
Based on the tests, KNN method with K 1 obtained the best accuracy of 96.20 at 100 iterations and 90 training data. This result shows the KNN method is better than the SVM method which only obtained 94.80 at 100 iterations and 90 of training data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghea Dwi Apriliana
"Penyakit paru obstruktif kronik (PPOK) merupakan salah satu penyakit yang menjadi masalah di Indonesia. PPOK ditandai oleh hambatan aliran udara di saluran napas yang disebabkan oleh kelainan saluran napas atau kelainan anatomis paru atau kombinasi dari keduanya. Salah satu komplikasi yang dapat terjadi pada penderita PPOK yaitu kurangnya asupan oksigen pada waktu malam hari. Keadaan tersebut akan semakin diperberat apabila penderita PPOK juga menderita gangguan tidur Obstructive Sleep Apnea (OSA). OSA adalah gangguan tidur yang disebabkan penyumbatan saluran napas dan menyebabkan jeda sementara saat napas minimal 10 detik.
Pada penelitian ini, peneliti menggunakan seleksi fitur Information Gain untuk mencari fitur-fitur yang berpengaruh terhadap risiko terjadinya OSA pada pasien PPOK. Setelah proses seleksi fitur selesai, peneliti menggunakan metode Random Forest untuk mengklasifikasi pasien PPOK yang beresiko tinggi terkena OSA dan yang berisiko rendah terkena OSA. Sampel pada penelitian ini merupakan 111 pasien PPOK yang berada di RS Cipto Mangunkusumo.
Dari hasil penelitian ini, nilai akurasi terbaik didapat saat penggunaan 4 fitur terbaik dari keseluruhan fitur (10% fitur dari keseluruhan fitur) sebesar 85.71% dengan sensitifitas dan spesifisitas berturut-turut sebesar 71.43% dan 92.86%. Fitur yang memiliki rangking terbaik adalah lingkar pinggang.

Chronic obstructive pulmonary disease (COPD) is one of the epidemic diseases in Indonesia. The characters of COPD can be seen from airway abnormalities, anatomical abnormalities of the lungs, or the combination of both. One complication that can occur in patients with COPD is lack of oxygen intake at night. This situation will be further aggravated if COPD patients also suffer from Obstructive Sleep Apnea (OSA). OSA is a sleep disorder caused by airway obstruction, and causes a temporary pause when breathing for at least 10 seconds.
In this study, we used Information Gain feature selection to determine which features that affect the risk of OSA in COPD patients. After the feature selection process was completed, we used the Random Forest Classifier method to classify who has the high risk and who has the low risk of developing OSA in COPD patients. The sample in this study consist of 111 COPD patients with 34 features who hospitalized in Cipto Mangunkusumo Hospital.
From experimental result, the best accuracy are obtained by 4 features (10% of total features) i.e 85.71% with sensitivity and specificity are 71.43% and 92.86% respectively. The feature with highest ranking is waist size.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jihan Maharani
"Saat ini, penyusupan pada suatu sistem jaringan sering sekali terjadi. Gangguan tersebut dapat dicegah atau dideteksi salah satunya dengan menggunakan Intrusion Detection System. Intrusion Detection System sangat diperlukan untuk melindungi jaringan dan menghalangi serangan. Pada penelitian ini, dibahas pengklasifikasian data Intrusion Detection System menggunakan Multi-Class Support Vector Machine dengan pemilihan fitur Information Gain dengan data yang digunakan yaitu KDD-Cup99. Sebagai hasil, akan dibandingkan nilai akurasi model IDS menggunakan Support Vector Machine dengan dan tanpa pemilihan fitur serta percobaan pengaplikasian model untuk klasifikasi pada data unseen dengan model yang sudah didapat dengan menggunakan 8 fitur dan data training sebesar 80.

Nowadays, the intrusions often occur in a network system. One of ways that Intrusions can be prevented or detected is by using Intrusion Detection System. Intrusion Detection System indispensable to protect the network and to prevent the intrusions. In this paper, the author will discuss about the classification IDS data using Multi Class Support Vector Machine with feature selection using Information Gain and for the data used KDDCup99 Data Set. As a result, it will be compared the accuracy between IDS model using Support Vector Machine with and without feature selection and the application of model has been obtained from the experiment using eight features and 80 data training to unseen data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putroue Keumala Intan
"Klasifikasi penilaian risiko kredit merupakan cara untuk meminimalisir kerugian yang akan dialami oleh bank. Salah satu metode klasifikasi yang digunakan untuk mengklasifikasikan karakteristik calon debitur adalah Support Vector Machine (SVM). SVM mempunyai kemampuan generalisasi yang baik untuk menyelesaikan masalah klasifikasi dalam jumlah data yang besar dan dapat menghasilkan fungsi pemisah yang optimal untuk memisahkan dua kelompok data dari dua kelas yang berbeda. Salah satu keberhasilan menggunakan metode SVM adalah proses pemilihan model yang akan mempengaruhi tingkat akurasi klasifikasi.
Metode pemilihan model yang digunakan pada tesis ini adalah metode grid search dan metode random search. Data dalam tesis ini menggunakan data sekunder dari database dalam UCI machine learning repository. Berdasarkan hasil simulasi untuk membandingkan nilai akurasi penggunaan metode pemilihan model pada SVM dalam klasifikasi penilaian risiko kredit, diperoleh bahwa metode random search belum mampu menghasilkan nilai akurasi yang lebih baik dari metode grid search. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44060
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>