Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120397 dokumen yang sesuai dengan query
cover
Rizkiani Febrianti
"Estimasi parameter pada model regresi logistik pada umumnya menggunakan metode maximum likelihood dengan iterasi Newton Raphson. Pada model regresi logistik, estimasi parameter menggunakan metode maximum likelihood tidak dapat digunakan apabila ukuran sampel kecil dan proporsi kejadian sukses kecil. Permasalahan yang muncul saat ukuran sampel kecil dan proporsi sukses kecil, jika menggunakan metode maximum likelihood adalah proses iterasi yang tidak konvergen. Oleh sebab itu dalam kondisi tersebut, metode maximum likelihood tidak dapat digunakan untuk estimasi parameter.
Salah satu cara untuk mengatasi ketidakkonvergenan pada iterasi tersebut adalah menggunakan modifikasi score function. Modifikasi score function dapat digunakan untuk mendapatkan estimasi parameter model regresi logistik dengan melakukan modifikasi pada fungsi likelihood. Contoh aplikasi diberikan untuk menunjukkan bahwa kemungkinan estimasi parameter model regresi logistik dengan ukuran sampel kecil dan proporsi sukses kecil menggunakan metode maximum likelihood dengan iterasi Newton Raphson memberikan hasil yang tidak konvergen dan hal ini dapat diselesaikan dengan menggunakan modifikasi score function.

The maximum likelihood method with Newton Raphson iteration is used in general to estimate the parameter on logistic regression model. This parameter estimation using the maximum likelihood method cannot be used if the size of the sample and proportion of successful events are small. It is because the iteration process will not convergent to some point. Therefore, the maximum likelihood method cannot be used to estimate the parameter.
One of the ways to resolve this convergent problem is using the score function modification. This modification is used to obtain the parameter estimation on logistic regression model by doing some modification on the likelihood function. The example of parameter estimation, using maximum likelihood method with small size of sample and proportion of successful events, is given to show may be the iteration process is not convergent and this can be solved with modification score function.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Yuli Yasinta
"Model regresi linier berganda adalah model yang dapat digunakan untuk menaksir nilai-nilai suatu variabel terikat berdasarkan lebih dari satu variabel bebas pada data. Metode yang dapat digunakan untuk menaksir model regresi linier berganda adalah maximum likelihood estimator MLE . Namun, MLE memiliki kelemahan, yaitu sensitif terhadap data yang mengandung outlier dan memiliki waktu proses running time yang relative lama. Metode yang digunakan untuk mengatasi kelemahan tersebut adalah metode parallel. Metode parallel adalah metode yang membagi data menjadi beberapa kelompok. Salah satu metode pengelompokan yang sering digunakan untuk mencari banyak atau jumlah cluster adalah k-means clustering.
Pada tugas akhir ini, proses MLE dilakukan pada setiap cluster, sehingga metode ini disebut parallel maximum likelihood estimator. Data yang digunakan pada tugas akhir ini berasal dari bankruptcy data bank32nh . Bank32nh adalah data mengenai antrian pada suatu bank XYZ yang terdiri dari 4500 observasi, 1 variabel terikat, dan 31 variabel bebas. Dari hasil aplikasi data, parallel maximum likelihood estimator memiliki waktu proses running time yang lebih singkat dan nilai mean square error MSE yang lebih kecil.

Multiple linear regression model can be used to estimate the value between one dependent variable and more than one independent variables on the data. A method that can be used to estimate the parameters of the model is the maximum likelihood estimator MLE. However, MLE has weakness e.i sensitive to the data that contains outlier and has a relatively long running time. To overcome these weaknesses the parallel method is used. In the parallel method, the data is devided into several groups. One of the known clustering methods is "k means clustering".
In this study, the MLE process did on each cluster, so that this method is called the parallel maximum likelihood estimator. The current data used for this research is from bankruptcy data bank32nh . Bank32nh is a dataset about the queue at a XYZ bank which consist of 4500 observations, one dependent variable, and 31 independent variables from experimental results, parallel maximum likelihood estimator the running time is faster and has smaller mean square error MSE.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27701
UI - Skripsi Open  Universitas Indonesia Library
cover
Simbolon, Helen Giovani
"Tugas akhir ini membahas mengenai penggunaan metode Maksimum Likelihood (ML) dan Bayes dalam penaksiran parameter shape 𝛽 pada distribusi Kumaraswamy. Kedua metode tersebut akan dibandingkan berdasarkan Mean Square Error (MSE) yang diperoleh dari masing-masing taksiran. Pada metode Bayes digunakan dua fungsi Loss yaitu Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Selanjutnya, akan dibandingkan Resiko Posterior yang diperoleh dari kedua fungsi loss tersebut. Hasil yang diperoleh dari perbandingan tersebut diterapkan pada data hidrologi sebagai rekomendasi metode terbaik yang dapat menggambarkan data tersebut.

This paper disscusses about Maximum Likelihood (ML) and Bayes method in estimating the shape β parameter in Kumaraswamy distribution. Both of the methods will be compared according to Mean Square Error (MSE) obtained from each estimator. At Bayes method, it will be used two Loss functions, those are Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). Then, Posterior Risk obtained from both of loss functions will be compared. The comparison will be applied to hydrological data as a recommendation for the best method in representating the data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63791
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Meidiyana Andriyana
"Model probit adalah salah satu jenis model pilihan diskrit dengan error yang diasumsikan saling bebas, berdistribusi normal, dan homoskesdastis. Model probit dengan komponen error dari observasi di suatu lokasi bergantung dengan komponen error dari observasi di lokasi lain disebut model probit spasial error. Parameter dari model probit spasial error akan ditaksir dengan metode maksimum likelihood parsial dalam dua cara. Cara pertama dengan memperhitungkan variansi dari error dalam pembentukan fungsi likelihood parsial.
Cara kedua dengan membentuk n grup dari sejumlah 2n observasi dari lokasi berbeda, dimana setiap grup terdiri dari dua observasi di lokasi yang berbeda. Selanjutnya, dengan memperhatikan korelasi antar error di dalam grup, akan dibentuk fungsi kepadatan probabilitas dari setiap grup yang akan digunakan untuk membentuk fungsi likelihood parsial dalam penaksiran parameter.

Probit Model is one of discrete choice model whose error is assumed to be independent, normal distributed, and homoscedastic. Probit model whose error component from observations on a location that depends on error components on the other location is called spatial error probit model. Parameters of spatial error probit model will be estimated by partial maximum likelihood in two ways. The first way is to take into account the variance of the error in the form of the partial likelihood function.
The second is to form n groups from 2n observations at different location, which each group consists of two observations at different location. Furthermore, by taking into account the correlation between errors in a group, the probability density function of each group will be formed, and later will be used to form a partial likelihood function in parameter estimation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61449
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Aditya Pramudita
"Distribusi Poisson seringkali digunakan untuk menganalisis data count. Distribusi Poisson memiliki asumsi ekuidispersi, yaitu nilai mean sama dengan nilai variansinya. Namun, yang sering terjadi pada data terapan adalah overdispersi, yaitu variansi lebih besar dari mean. Salah satu penyebab overdispersi adalah banyaknya pengamatan bernilai 0 pada data (excess zeros). Distribusi Zero-Inflated Poisson (ZIP) merupakan distribusi yang dapat digunakan pada data count dengan excess zeros. Distribusi ZIP merupakan campuran dari distribusi degenerate di 0 dan distribusi Poisson. Parameter dari distribusi ZIP adalah dan . Dengan menggunakan metode Maximum Likelihood Estimation (MLE), akan dicari taksiran titik untuk parameter dan, di mana menyatakan probabilitas pengamatan 0 merupakan structural zeros dan menyatakan mean dari subpopulasi yang berdistribusi Poisson. Walaupun penaksiran parameter distribusi ZIP menggunakan MLE menghasilkan taksiran parameter dengan nilai MSE yang kecil, namun taksiran parameter tersebut memiliki bias karena penaksiran parameter harus dilakukan secara numerik. Bias dari taksiran parameter tersebut dapat dikurangi menggunakan metode Bias-Reduced MLE. Penggunaan metode ini tidak memengaruhi nilai MeanĀ­-Squared Error (MSE) yang dimiliki oleh penaksir parameter MLE, sehingga bias dari penaksir parameter MLE dapat berkurang tanpa mengubah nilai MSE. Data simulasi digunakan untuk mengilustrasikan penaksiran parameter distribusi ZIP menggunakan Bias-Reduced MLE. Simulasi menunjukkan bahwa penaksiran parameter Bias-Reduced MLE menghasilkan bias penaksir yang lebih kecil daripada penaksir MLE pada ukuran sampel yang kecil. Selain itu, nilai MSE dari penaksir parameter Bias-Reduced MLE tidak berbeda secara signifikan dengan penaksir parameter MLE. Maka dari itu, penaksiran parameter Bias-Reduced MLE dapat mengurangi bias dari penaksir parameter MLE pada ukuran sampel yang kecil tanpa mengubah nilai MSE dari penaksir parameter MLE secara signifikan.

Poisson distribution is commonly used to analyse count data. It requires equidispersion assumption, i.e. equality of mean and variance. However, what often happened to real data is overdispersion, i.e. variance exceeds mean. One of the cause of overdispersion is excess zeros. Zero-Inflated Poisson (ZIP) distribution can be used to analyse count data with excess zeros. ZIP Distribution is a mixing distribution ofdegenerate at 0 and Poissondistribution. Parameters of ZIP distribution are 𝜔and𝜆, where 𝜔denotes probability of structural zeros and denotes mean of Poisson distributed subpopulation. Those parameterswill be estimated by Maximum Likelihood Estimation (MLE) method. Although MLE estimates provide small MSE, but they are biased because the estimation should use numerical method. A way to reduce the bias is by Bias Reduced MLE method. This method would not compromise MSEso that the bias reduced while MSE remains the same. Illustration of Bias-Reduced MLE parameter estimation is given by generating simulation data.Data simulation shows that with Bias-Reduced MLE, ML estimators bias isreduced in small samples. Besides, the MSE of Bias Reduced ML estimator is not significantly different with ML estimator. So that, Bias-ReducedML estimator would reduce bias of ML estimator without compromise the MSE."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azlin Ainun Asqollany
"Model pilihan diskrit adalah model yang digunakan untuk memodelkan pilihan. Model pilihan diskrit dapat diturunkan dari fungsi utilitas yang direpresentasikan dalam probabilitas pembuat keputusan memilih alternatif pilihan yang memberikan utilitas maksimum. Salah satu model pilihan diskrit adalah Model Mixed Logit. Model ini mengasumsikan koefisien dari variabel penjelasnya bersifat random yang dapat menggambarkan selera antar pembuat keputusan yang berbeda-beda dalam menentukan pilihan; dan komponen error berdistribusi Gumbel.
Model Mixed Logit merupakan campuran antara Model Logit dan distribusi dari koefisien random variabel penjelas. Parameter yang akan ditaksir pada Model Mixed Logit adalah parameter dari distribusi koefisien random, seperti mean dan variansi. Penaksiran parameter Model Mixed Logit menggunakan metode Maximum Simulated Likelihood Estimator (MSLE) berdasarkan metode Halton Sequence. Setelah diperoleh taksiran parameter, selanjutnya probabilitas pembuat keputusan untuk masing-masing pilihan dihitung, sehingga diperoleh alternatif pilihan yang memaksimumkan utilitas pembuat keputusan.

A discrete choice model is a model that be used to modelling the choices. A discrete choice model can be derived from a utility function which represented in probability of decision maker chooses an alternative which give maximum utility. Mixed Logit model is one of these choice type models. Mixed Logit model assumes that random coefficient of variable which can capture different taste variation over decision makers; and error term is Gumbel distributed.
Mixed Logit model is a mixture between Logit model and distribution of random coefficient. Estimated parameter in Mixed Logit model is parameter of random coefficient distribution, i.e mean and variance. The method of parameter estimation of this model is Maximum Simulated Likelihood Estimator (MSLE) which based on Halton Sequence method. After estimator is obtained, then probability that decision maker for each alternative calculated, so that an alternative which maximize utility of decision maker is obtained.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47143
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Khairunnisa Firdausi
"Penelitian dilakukan untuk memperoleh model estimasi demand antara dua buah produk ketika terjadi stock-out pada salah satu produk. Agar stock-out dapat dikurangi dan dihilangkan karena merugikan semua pihak, baik konsumen, retailer, maupun produsen produk itu sendiri. Model estimasi demand untuk kedua produk ini didapatkan dengan menggunakan metode Maximum Likelihood Estimates (MLEs).
Berdasarkan skenario penjualan didapatkan bahwa keadaan paling menguntungkan merupakan keadaan dimana kedua produk terdapat di stok. Keterbatasan stok dan besarnya tingkat penjualan menyebabkan keadaan stock-out sering terjadi. Hal ini harus disikapi karena dampaknya menjadi sangat merugikan. Melalui penelitian ini, didapatkanlah model estimasi demand konsumen untuk dua buah produk tersebut.

The study was conducted to obtain the estimated model of demand between two products when one of the product experiencing stock-out problem. In order that stock-outs can be reduced and eliminated because of disadvantage of all parties, like consumers, retailers, and manufacturers of the product. Estimation model of demand for both products can be obtained using Maximum Likelihood Estimates (MLEs) methods.
Under the sales scenario shows that the most favorable circumstances is a situation where both products are in stock. The limited amount of stock and sales levels cause stock-outs become very common. This must be addressed because of its impact will be very harmful. Through this research, it is concluded that the estimation model of consumer demand for two products.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51844
UI - Skripsi Open  Universitas Indonesia Library
cover
Ismi Nadiya
"Suatu runtun waktu yang memiliki variabel respon biner disebut runtun waktu biner. Runtun waktu biner dapat dimodelkan menggunakan model umum Autoregressive dengan pendekatan regresi non-linier. Kedem Fokianos 2000 mengenalkan model runtun waktu biner melalui pendekatan Autoregressive dan regresi logistik. Metode yang digunakan untuk penaksiran parameter yaitu metode Partial Likelihood. Metode Partial Likelihood ini dilakukan dengan menentukan fungsi Partial Likelihood yang dibentuk dari probability density function pdf marginal distribusi Bernoulli. Namun, dalam proses penaksiran parameter menggunakan metode Partial Likelihood ditemukan kesulitan untuk mendapatkan solusi secara langsung dikarenakan persamaan yang tidak linier closed form. Oleh karena itu, untuk mengatasi hal tersebut dilakukan iterasi menggunakan metode Fisher Scoring.
Aplikasi data pada penaksiran parameter untuk model runtun waktu biner dalam tugas akhir ini menggunakan data kompetisi balap perahu antara Universitas Cambridge dan Universitas Oxford yang dicatat pada tahun 1946 sampai 2011 dengan jumlah data berbeda yaitu 22, 44, dan 66 data. Berdasarkan aplikasi data yang dilakukan, diperoleh hasil bahwa penaksiran parameter untuk model runtun waktu biner menggunakan Partial Likelihood dengan jumlah data yang berbeda menghasilkan penaksir parameter yang relatif sama atau tidak memiliki perbedaan yang signifikan.

A time series that has binary respon variable is called a binary time series. Binary time series can be modeled using the Autoregressive general model and nonlinear regression approach. Kedem Fokianos 2000 introduced a binary time series model through the Autoregressive and logistic regression approach. The parameters of binary time series are estimated using the Partial Likelihood method. The Partial Likelihood method is performed by determining the Partial Likelihood function derived from the marginal probability density function pdf of Bernoulli distribution. However, in the process of parameter estimation using this method, the form of final function to obtain parameters is not in the closed form equation. To face this problem, Fisher scoring iterations are perfomed.
The application of parameter estimation of the model uses the data about boat racing competition between the University of Cambridge and Oxford University from 1946 to 2011. Based on the data application, parameter estimation of the binary time series model using partial likelihood with different amounts of data resulting in a relatively same or no significant parameter estimator.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>