Ditemukan 3767 dokumen yang sesuai dengan query
Gitta Indreswari
"Aljabar Lie sederhana merupakan aljabar Lie dengan karakteristik khusus, yaitu tidak abelian dan tidak memiliki ideal sejati yang tak nol. Dalam penelitian ini, dikenalkan suatu aljabar Lie sederhana yaitu sl fr infin;,K yang merupakan subaljabar Lie dari gl fr infin;,K . Aljabar Lie sederhana sl fr infin;,K memiliki dimensi yang tidak berhingga dengan basis yang tak terhitung.
Simple Lie algebra is Lie algebra with special characteristics, which is not abelian and not having any nonzero proper ideal. In this study, a simple Lie algebra sl fr infin ,K is introduced, which is a sub Lie algebra from gl fr infin ,K . Simple Lie algebra sl fr infin ,K has an infinitely dimension with an uncountably basis."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Andrew
"Aljabar Lie adalah ruang vektor atas suatu lapangan yang memenuhi beberapa aksioma tertentu. Salah satu dari aksioma aljabar Lie ini dikenal dengan identitas Jacobi. Dalam skripsi ini, dibahas karakteristik dari aljabar Lie seperti ideal, homomorfisma dan struktur konstan. Selain itu juga dibahas aljabar yang terturunkan dari suatu aljabar Lie. Untuk aljabar Lie berdimensi 2 dan 3 yang dibahas adalah aljabar Lie yang non-abelian. Khusus untuk aljabar Lie berdimensi 3 yang dibahas hanya sampai aljabar yang terturunkan berdimensi 2 dan pada lapangan kompleks.
Lie algebra is a vector space over a field that satisfy some axioms. One of the axioms is known as the Jacobi identity. In this thesis, it is discussed the characteristics of Lie algebra such as ideal, homomorphism and constant structure. Here, it is also discussed the derived algebra of Lie algebra. For the Lie algebra with dimension 2 and 3 to be discussed is a non-abelian Lie algebra. Especially for a 3-dimensional Lie algebra is discussed only to the derived algebra of dimension 2 on complex field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45670
UI - Skripsi Open Universitas Indonesia Library
Wed Giyarti
"Aljabar Lie adalah ruang vektor atas suatu lapangan yang dilengkapi dengan bracket Lie yang bilinier, bersifat antisimetri dan memenuhi identitas Jacobi. Salah satu contoh dari aljabar Lie adalah himpunan pemetaan linier dari ruang vektor V ke V, yang dinotasikan dengan gl(V), dengan bracket Lie berupa komutator. Jika V adalah suatu aljabar, maka himpunan derivasi dari V (dinotasikan dengan Der(V)) membentuk suatu subaljabar Lie dari gl(V). Holomorph dari aljabar Lie L, yaitu hasil tambah langsung dari L dan Der(L), juga membentuk aljabar Lie. Aljabar Lie dikatakan lengkap jika pusatnya adalah himpunan nol dan semua derivasinya adalah derivasi dalam. Pada tesis ini, diulas syarat yang harus dipenuhi agar aljabar derivasi dan holomorph dari suatu aljabar Lie menjadi lengkap.
Lie algebra is a vector space over a field together with a bilinear Lie bracket, that satisfy antisymmetry and Jacobi identity. One of the examples of Lie algebra is a set of linear transformation from a vector space V to V, that is denoted by gl(V), with a commutator as the Lie bracket. If V is an algebra then the set of derivation of V (denoted by Der(V)) forms a Lie subalgebra of gl(V). The holomorph of a Lie algebra, that is direct sum of vector spaces L and Der(L), also forms a Lie algebra. A Lie algebra is called complete if its center is zero and all its derivations are inner. In this thesis, it is discussed the properties that must be satisfied in order to the derivation and the holomorph of Lie algebra become complete."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T39251
UI - Tesis Membership Universitas Indonesia Library
Hardinge, Frances
Jakarta: Elex Media Komputindo , 2020
823 HAR l
Buku Teks SO Universitas Indonesia Library
Soo, S. L
Tokyo: Maruzen Company Ltd, 1959
621.4022 SOO t
Buku Teks Universitas Indonesia Library
Freudenthal, Hans
New York: Academic Press, 1987
512.86 FRE l
Buku Teks SO Universitas Indonesia Library
Berlin: Springer-Verlag, 1993
R 512.55 LIE
Buku Referensi Universitas Indonesia Library
Hilgert, Joachim
"This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity."
New York: Springer, 2012
e20418896
eBooks Universitas Indonesia Library
"This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras. "
New York: Springer, 2012
e20419447
eBooks Universitas Indonesia Library
Anderson, Robert L.
"This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity."
Philadelphia: Society for Industrial and Applied Mathematics, 1979
e20451281
eBooks Universitas Indonesia Library