Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 132931 dokumen yang sesuai dengan query
cover
Gita Ayu Ardiani
"ABSTRAK
Perkembangan Wireless Body Area Network dalam dunia telemedis terus meningkat seiring kebutuhan dan peningkatan pelayanan, walaupun begitu bentuk komunikasi yang efisien dan efektif menjadi hal yang sangat penting untuk setiap jenis jaringan komunikasi tanpa kabel. Salah satu komponen yang paling penting dalam perhitungan perancangan jaringan komunikasi adalah eksponen path loss. Bedasarkan hal tersebut, maka tujuan dari penelitian ini adalah mengetahui karakteristik propagasi untuk komunikasi on-body dan off-body dengan membandingkan simulasi dan pengukuran menggunakan antena tekstil magnetik pada frekuensi 2.45 GHz dan 924 MHz dengan variasi jarak dalam kondisi LOS dan NLOS. Pada skripsi ini, digunakan friss formula untuk mendapatkan nilai eksponen path loss yang menunjukkan karakteristik dari propagasi. Perhitungan nilai eksponen path loss untuk simulasi dan pengukuran pada komunikasi on-body dengan kondisi LOS dan NLOS berada diantara 1.7-2.1 sedangkan off-body dengan kondisi LOS dan NLOS berada diantara 2.1-5.2. Hasil tersebut menunjukkan bahwa tubuh mempengaruhi nilai eksponen path loss dan memiliki karakteristik tersendiri.Kata Kunci:Antena Tekstil, Pengukuran Path Loss, Komunikasi on-body off-body, Frekuensi Ganda.

ABSTRACT
Evolution of Wireless Body Area Network WBAN in telemedicine field keep increased along with needs and enchancement of services, nevertheless an efficient and effective form of communication becomes essential for any type of wireless communication network. One of the most important parameter for designing communication network is path loss exponent. Based on that, the purpose of this research is to know the propagation characteristics for on body and off body communication by comparing the simulation and measurement using magnetic textile antenna at 2.45 GHz and 924 MHz with distance variation in LOS and NLOS conditions. In this thesis, friis formula is used to get the path loss exponent value that shows the characteristics of propagation. The calculation of path loss exponent value for simulation and measurement for on body communication with LOS and NLOS conditions are between 1.7 2.1 while off body with LOS and NLOS conditions are between 2.1 5.2. These results show that the body affects path loss exponents value and has its own characteristics.Keywords Textile Antenna, Path Loss Measurement, On body Off body communication, Dual band"
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novi Yohanna
"[ABSTRAK
Pemodelan kanal propagasi menjadi isu penting di dalam sistem komunikasi nirkabel body-centric (BWCS) yang efektif dan efisien. Prediksi karakteristik path loss dapat membantu estimasi kekuatan sinyal yang diterima, optimasi dan analisis interferensi, perancangan dan analisis link budget, serta estimasi ukuran coverage. Model path loss terdiri dari tiga klasifikasi, yaitu model deterministik, empiris dan semi-empiris.
Tujuan dari skripsi ini ialah mengestimasi model path loss berdasarkan hasil pengukuran pada komunikasi off-body dan on-body dengan menggunakan antena tekstil yang bekerja di frekuensi ISM 2,45 GHz di Anechoic Chamber, serta menganalisis karakteristik kanal propagasinya. Pada skripsi ini digunakan model path loss semi-empiris. Dari berbagai model yang digunakan untuk memodelkan path loss hasil pengukuran komunikasi off-body dan on-body, menunjukkan nilai root mean square error (RMSE) jauh di bawah 6 dB.
Dalam skripsi ini juga dilakukan estimasi model kanal propagasi dari tiap skenario pengukuran komunikasi off-body dan on-body yang dilakukan. Pendekatan model kanal dilakukan dengan melihat kesesuaian distribusi path loss hasil pengukuran dengan jenis model kanal yang diuji. Model kanal uji yang dipakai meliputi model distribusi log-normal, Nakagami, Rayleigh, dan Ricean. Hasil analisis menunjukkan bahwa pada komunikasi off-body, model distribusi Ricean dan Nakagami sama baiknya dalam merepresentasikan data pengukuran. Selain itu, pada komunikasi on-body, fungsi distribusi kumulatif (CDF) pada model Ricean lebih mendekati hasil pengukuran daripada distribusi Nakagami.

ABSTRACT
, Channel propagation modeling is very essential for effective and efficient performance in body-centric wireless communications system (BWCS). Path loss characteristics prediction plays an important role in estimation of received signal strength, interference optimization and analysis, link budget design and analysis, and coverage area estimation. The Path loss models are commonly classified as deterministic, empirical, or semi-empirical model.
This bachelor thesis is aimed to estimate path loss model based on off-body and on-body communications measurement results in Anechoic Chamber by using a textile antenna at 2,45 GHz of ISM band, and to analyze propagation channel characteristics. In this study, semi-empirical path loss model is adopted. From various path loss models that are used to estimate the propagation channel model from the measurement results in off-body and on-body communications, each root mean square errors (RMSE) of the predicted model is less than 6 dB.
This thesis also estimates propagation channel model of several off-body and on-body measurement scenarios. The approached channel model is conducted by comparing the measured path loss data with some theoretical channel distribution models. Those models are log-normal, Nakagami, Rayleigh, and Ricean distribution model. The data analysis showed that as for off-body communication, either Nakagami or Ricean distribution model is equally well suited for representing the measured data. Moreover, as for on-body communication, the Ricean distribution model is suited to the measured data rather than the Nakagami model in terms of its cumulative distribution function (CDF).]
"
Fakultas Teknik Universitas Indonesia, 2015
S59870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lawrence, Philips
"Dalam beberapa tahun terakhir, teknologi RFID telah menarik perhatian dunia di berbagai bidang termasuk bidang kesehatan. RFID menawarkan sistem identifikasi yang lebih baik dikarenakan RFID tidak memerlukan kontak langsung maupun Line of Sight dengan penerima, memiliki media penyimpanan, serta memiliki akurasi dan kehandalan yang lebih baik. Salah satu antena yang dapat memenuhi kebutuhan sistem RFID adalah antena planar loop.Pada skripsi ini dirancang antena planar loop untuk aplikasi RFID on-body. Antena dirancang agar dapat bekerja pada frekuensi 924 MHz, dengan Gain > -29dB dan pola radiasi bidang horizontal > 900 pada jarak 2 mm dari tubuh manusia. Pada simulasi digunakan 3 jenis objek yang didekatkan pada antena untuk menggantikan tubuh manusia, yaitu phantom tiga lapis, voxel, dan phantom ekuivalen otot. Dari hasil simulasi dan pengukuran, antena yang dirancang mampu bekerja pada frekuensi 924 MHz dengan nilai VSWR 2 dengan Gain > -29dB ketika didekatkan pada jarak 2 mm dari tubuh manusia dan phantom muscle equivalent.

In recent years, RFID is generating significant interest in several application including healtcare industry. RFID offers a better identification system because RFID does not require direct contact or line of sight to the receiver, having the storage media, and has accuracy and better reliability. One of antenna that can meet the needs of RFID system is a planar loop antenna. In this paper designed planar loop antenna for off-body communication based on RFID system. The antenna is designed to work at frequencies 924 MHz, with Gain> 29dB and horizontal plane radiation pattern > 900 at a distance of 2 mm from the human body. In the simulations used 3 types of objects brought near the antenna to replace the human body, which is a three-layer phantom, voxel, and muscle equivalent phantom. From the results of simulation and measurement, antenna designed is able to work at a frequency of 924 MHz with a VSWR 2 and Gain > -29dB when held at a distance of 2 mm from the human body and muscle equivalent phantom."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47723
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Triaji
"Teknologi Body-Centric Wireless Communication dalam beberapa tahun terakhir ini telah menarik perhatian dunia. Tidak hanya dari bidang kesehatan yang memanfaatkan teknologi ini, di bidang olahragapun sudah ada perusahaan besar yang menggunakan teknologi ini. Body-Centric Wireless Communication ini terbagi menjadi 3 bagian yaitu in-body, on-body dan off-body communication. Pada sistem komunikasi ini, kinerja sistem dipengaruhi oleh interaksi gelombang elektromagnetik dengan tubuh. Oleh karena itu, sangatlah penting untuk mengetahui pengaruh tubuh terhadap kinerja antena, karena pada setiap bagian tubuh memiliki karakteristik listrik yang berbeda. Pemodelan karakteristik tubuh biasanya diperlukan untuk mendapatkan hasil kinerja antena yang akurat. Pada penelitian ini, dirancang antena tag dengan bentuk P-IFA yang dicatu dengan teknik coplanar waveguide (CPW) untuk komunikasi off/on-body pada frekuensi 2,45 GHz. Antena kemudian ditempel pada tubuh manusia atau diletakkan di dekat tubuh pada sekitar jarak 3mm. Antena yang dirancang memiliki ukuran yang kecil agar dapat diinstalasi di dekat tubuh manusia dengan mudah.
Hasil simulasi antena di kondisi udara bebas, antena memiliki frekuensi resonansi pada 2,63 GHz dengan nilai S11 -20,75 dB, bandwidth 169 MHz dan gain 1,22 dB. Ketika antena diletakkan dekat tubuh manusia atau pada phantom 3 lapis frekuensi bergeser ke 2,45 GHz dengan nilai S11 -17,05 dB dengan bandwidth 245,8 MHz. Selanjutnya kondisi antena saat diletakkan dengan phantom ekivalen otot memiliki nilai S11 pada frekuensi 2,45 GHz yaitu sebesar -17,60 dB dengan bandwidth 217 MHz dan gain sebesar -7,41 dB. Pada pengukuran, nilai S11 saat kondisi antena di udara bebas sebesar -34,87 dB pada frekuensi 2,63 GHz dengan bandwidth 137 MHz dan gain 1,74 dB. Saat antena diletakkan dekat dengan tubuh, frekuensi bergeser ke 2,45 GHz dengan nilai S11 -16,78 dB dan bandwidth sebesar 174 MHz. Setelah itu pengukuran dilakukan pada kondisi antena diletakkan pada phantom ekivalen otot. Hasil pengukuran S11 pada frekuensi 2,45 GHz ialah sebesar -18,29 dB dengan bandwidth 169 MHz dan gain -9,06 dB. Dengan demikian, antena yang dirancang dapat bekerja dengan baik pada frekuensi 2,45 GHz.

The body centric wireless communication technology has in these few years attracted the world's attention. Not only in the medical field it's uses can be , it extends it's reach even towards giant sport companies. Body centric wireless communication is comprised from 3 categories, of which are the in body, on body and off body communication. In this kind of communication system, the performance of the system will be affected by the interactions between the body and electromagnetic wave. Hence, its necessary to understand the effect of body proximity towards antennas performance, as every body parts have different electrical characteristics. As a result, making a simple model of human's body might be necessary to achieve excellent performance from the antenna. In this research, a tag antenna is being design with a printed inverted f shape, which powered by the coplanar waveguide (CPW) for on/off body communications on the ISM band 2.45 GHz. The tag antenna will then be attached to a human body, as close as 3mm from the skin. The smaller shape is more desired, as it will be easier to attach on human body.
The simulation result in freespace shows that this antenna's resonant frequency is 2.63 GHz with the S11 value as low as -20.75 dB, while the bandwidth is 169 MHz and gain is 1.22 dB. When the antenna is within the proximity of human body or a 3 layered phantom in this case, the frequency will shifts to 2.45 GHz along with the S11 of -17.05 dB. Due to the proximity of the phantom, the bandwidth will be 245.8 MHz wide. Also following, a condition where the antena is attached in a muscle equivalent phantom which resulting in -17.60 dB of S11 value at the frequency of 2.45 GHz with the bandwidth of 217 MHz and -7.41 dB gain. In measurement, the S11 in freespace is -34.87 dB at the frequency of 2.63 GHz while the bandwidth and gain shows 137 MHz, and 1.74 dB respectively. Then it is brought to the proximity of a human body which resulting in the shifts of resonant frequency to 2.45 GHz, S11 to -16.78 dB and bandwidth tp 174 MHz. As part of the progress, the antena is attached on a muscle equivalent phantom. The measurements shows that S11 is -18.29 dB at the frequency of 2.45 GHz, while bandwidth and gain are in the value of 169 MHz and -9.06 dB respectively. In conclusion, the antenna designed can work excellently at the frequency of 2.45 GHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Triaji
"ABSTRAK
Teknologi Body-Centric Wireless Communication dalam beberapa tahun terakhir ini telah menarik perhatian dunia. Tidak hanya dari bidang kesehatan yang memanfaatkan teknologi ini, di bidang olahragapun sudah ada perusahaan besar yang menggunakan teknologi ini. Body-Centric Wireless Communication ini terbagi menjadi 3 bagian yaitu in-body, on-body dan off-body communication. Pada sistem komunikasi ini, kinerja sistem dipengaruhi oleh interaksi gelombang elektromagnetik dengan tubuh. Oleh karena itu, sangatlah penting untuk mengetahui pengaruh tubuh terhadap kinerja antena, karena pada setiap bagian tubuh memiliki karakteristik listrik yang berbeda. Pemodelan karakteristik tubuh biasanya diperlukan untuk mendapatkan hasil kinerja antena yang akurat. Pada penelitian ini, dirancang antena tag dengan bentuk P-IFA yang dicatu dengan teknik coplanar waveguide (CPW) untuk komunikasi off/on-body pada frekuensi 2,45 GHz. Antena kemudian ditempel pada tubuh manusia atau diletakkan di dekat tubuh pada sekitar jarak 3mm. Antena yang dirancang memiliki ukuran yang kecil agar dapat diinstalasi di dekat tubuh manusia dengan mudah. Hasil simulasi antena di kondisi udara bebas, antena memiliki frekuensi resonansi pada 2,63 GHz dengan nilai S11 -20,75 dB, bandwidth 169 MHz dan gain 1,22 dB. Ketika antena diletakkan dekat tubuh manusia atau pada phantom 3 lapis frekuensi bergeser ke 2,45 GHz dengan nilai S11 -17,05 dB dengan bandwidth 245,8 MHz. Selanjutnya kondisi antena saat diletakkan dengan phantom ekivalen otot memiliki nilai S11 pada frekuensi 2,45 GHz yaitu sebesar -17,60 dB dengan bandwidth 217 MHz dan gain sebesar -7,41 dB. Pada pengukuran, nilai S11 saat kondisi antena di udara bebas sebesar -34,87 dB pada frekuensi 2,63 GHz dengan bandwidth 137 MHz dan gain 1,74 dB. Saat antena diletakkan dekat dengan tubuh, frekuensi bergeser ke 2,45 GHz dengan nilai S11 -16,78 dB dan bandwidth sebesar 174 MHz. Setelah itu pengukuran dilakukan pada kondisi antena diletakkan pada phantom ekivalen otot. Hasil pengukuran S11 pada frekuensi 2,45 GHz ialah sebesar -18,29 dB dengan bandwidth 169 MHz dan gain -9,06 dB. Dengan demikian, antena yang dirancang dapat bekerja dengan baik pada frekuensi 2,45 GHz.

ABSTRACT
The body centric wireless communication technology has in these few years attracted the world's attention. Not only in the medical field it's uses can be , it extends it's reach even towards giant sport companies. Body centric wireless communication is comprised from 3 categories, of which are the in body, on body and off body communication. In this kind of communication system, the performance of the system will be affected by the interactions between the body and electromagnetic wave. Hence, its necessary to understand the effect of body proximity towards antennas performance, as every body parts have different electrical characteristics. As a result, making a simple model of human's body might be necessary to achieve excellent performance from the antenna.
In this research, a tag antenna is being design with a printed inverted f shape, which powered by the coplanar waveguide (CPW) for on/off body communications on the ISM band 2.45 GHz. The tag antenna will then be attached to a human body, as close as 3mm from the skin. The smaller shape is more desired, as it will be easier to attach on human body.
The simulation result in freespace shows that this antenna's resonant frequency is 2.63 GHz with the S11 value as low as -20.75 dB, while the bandwidth is 169 MHz and gain is 1.22 dB. When the antenna is within the proximity of human body or a 3 layered phantom in this case, the frequency will shifts to 2.45 GHz along with the S11 of -17.05 dB. Due to the proximity of the phantom, the bandwidth will be 245.8 MHz wide. Also following, a condition where the antena is attached in a muscle equivalent phantom which resulting in -17.60 dB of S11 value at the frequency of 2.45 GHz with the bandwidth of 217 MHz and -7.41 dB gain.
In measurement, the S11 in freespace is -34.87 dB at the frequency of 2.63 GHz while the bandwidth and gain shows 137 MHz, and 1.74 dB respectively. Then it is brought to the proximity of a human body which resulting in the shifts of resonant frequency to 2.45 GHz, S11 to -16.78 dB and bandwidth tp 174 MHz. As part of the progress, the antena is attached on a muscle equivalent phantom. The measurements shows that S11 is -18.29 dB at the frequency of 2.45 GHz, while bandwidth and gain are in the value of 169 MHz and -9.06 dB respectively.
In conclusion, the antenna designed can work excellently at the frequency of 2.45 GHz."
Fakultas Teknik Universitas Indonesia, 2014
S62166
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Rodhiah
"Salah satu aplikasi yang menggunakan antena mikrostrip pada komunikasi wireless adalah komunikasi wireless LAN (WLAN). WLAN merupakan layanan komunikasi jaringan tanpa kabel dalam suatu jaringan lokal antara client device (laptop, PDA, computer dengan kartu PCI) dengan Access Point. Sesuai dengan standar IEEE untuk WLAN, jaringan ini bekerja pada frekuensi 2,4 GHz hingga 2,483 GHz (802.11 b/g) dan band 5 GHz dengan kisaran frekuensi yang digunakan terdiri dari tiga sub band,yaitu (5,15 - 5,25) GHz, (5,25 -5,35) GHz dan (5,725 = 5,825) GHz (802.11 a)[3].
Pada penelitian ini akan dirancang bangun suatu antena mikrostrip segiempat untuk aplikasi wireless LAN. Dengan menggabungkan antara patch segi empat yang beroperasi pada band 2,4 GHz dan patch dengan slot S yang beroperasi pada band 5 GHz menggunakan slot berbentuk U untuk menghasilkan karakteristik Dual Band. Antena yang akan dirancang menggunakan teknik pencatuan electromagnetically coupled untuk meningkatkan bandwidth.
Dari hasil pengukuran antena mikrostrip dual band dengan slot U dan S mampu mengakomodasi seluruh frekuensi kerja WLAN, baik menurut standar 802.11b maupun standar 802.11a. Bandwidth yang diperoleh pada band 2,4 GHz sebesar 144,4 MHz sedangkan bandwidth pada band 5 GHz lebih dari 1 GHz dengan gain rata - rata sebesar 4 dB di band 2,4 GHz dan 7 dB di band 5 GHz.

Wireless Local Area Network (WLAN) is one of wireless communication application using microstrip antenna. WLAN provides wireless communication between the client devices (i.e. laptop, PDA, PC with PCI cards) with the access point in a local network. According to the standard of IEEE for WLAN, the network will work at frequency of 2.4- 2.483 GHz (802.11 b/g) and band of 5 GHz which consists of three sub bands 5.15-5.25 GHz, 5.25-5.35 GHz and 5.725-5.825 GHz (802.11a)[3].
This project is purposed to design a rectangular microstrip antenna for WLAN application. It was designed using electromagnetically coupled to improve impedance bandwidth. Dual band characteristic is produced by combining the 2.4 GHz band rectangular and the 5 GHz band of S slot patches using U slot.
The measurement result shows that dual band microstrip antenna using U and S slots is able to accommodate all WLAN frequencies both 802.11b/g and 802.11a standards. The impedance bandwidths which are resulted from 2.4 GHz is about 144.4 MHz and from 5 GHz is more than 1 GHz with average gains are 4 dB on 2.4 GHz and 7 dB on 5 GHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40319
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Garniwan
"Perangkat komunikasi selular dewasa ini berkembang sangat pesat. Hal ini terjadi karena berbagai fitur yang terdapat dalam perangkat komunikasi bergerak semakin lengkap dan kompleks. Diantaranya dengan ditambahkannya perangkat penentu lokasi atau Global Positioning System (GPS) ke dalam perangkat komunikasi bergerak. Ditambahkannya perangkat GPS pada perangkat komunikasi bergerak membuat kebutuhan antenna yang kecil dan kompak serta mampu beroperasi pada frekuensi multiband semakin meningkat.
Antena GPS yang ada pada umumnya merupakan antena perangkat luar/eksternal, atau menggunakan beberapa antena internal yang beroperasi pada band frekuensi yang berbeda-beda dimana konstruksi ini kurang sesuai karena membuat perangkat selular menjadi lebih besar.
Oleh karena itu, pada penelitian ini akan dirancang sebuah antena yang kecil dan mampu beroperasi pada dua band frekuensi yang berbeda yaitu single band frekuensi cellular CDMA 826 MHz dan single band frekuensi civillian GPS L1. Antena yang dirancang berupa antena microstrip segiempat tiga susun dimana dua susunan yang pertama merupakan antena selular dengan patch yang dishort ke groundplane untuk mendapatkan ukuran yang kompak, dan susunan yang paling atas merupakan antena GPS single band.
Karena membutuhkan perhitungan yang rumit dan berulang-ulang maka rancang bangun antena ini menggunakan bantuan perangkat lunak Microwave office. Untuk antena selular didapat frekuensi band sebesar 92,4MHz (800,799-893,039) dengan gain yang diperoleh sebesar 5,64dB pada frekuensi tengah 826MHz. Sedangkan untuk antena GPS diperoleh frekuensi resonansi 1573,3MHz dengan Gain yang didapat sebesar 6.22dB. Perolehan ini cukup baik dan memenuhi spesifikasi yang dibutuhkan untuk dapat digunakan pada kebutuhan antena selular dan GPS.

Recently, mobile communication device technology has been growing rapidly. It has very complete features with the size become smaller. GPS or global positioning system is one of popular feature that has been integrated to the mobile communication device recently. That mean the demand of small, compact antenna that capable to operate in multiband frequency are become highly increase.
Convensional GPS antenna generally were an external antenna, or use couple internal antenna that operate in different frequency were the construction are less fit because made the device become bigger. Therefore on this thesis, we develope a compact internal dual band microstrip antenna that capable to operate in dualband frequency, cellular CDMA band (824MHz-894MHz) and GPS L1 (1575.75 MHz).
The antenna which has been design is a triple stacked patch where the first two stacked is a cellular antenna with groundplane shorted using multiple pins. This construction made the antenna smaller and suitable to use for mobile communication. The highest stack patch use for single band GPS antenna.
The design need very complex calculation and use a computer software microwave office to solve the problem. The result is good enough to fulfill the spesification to use in both cellular and GPS band, the frequency band of the cellular antenna is 92,4 MHz(800,799MHz - 893,039MHz) with gain achievement 5,64dB at center frequency 826MHz and for frequency of GPS antenna is 1573.3 MHz with gain achievement 6.22dB."
Depok: Fakultas Teknik Universitas Indonesia, 2006
T24930
UI - Tesis Membership  Universitas Indonesia Library
cover
Ivan Garniwan
"Perangkat komunikasi selular dewasa ini berkembang sangat pesat. Hal ini terjadi karena berbagai fitur yang terdapat dalam perangkat komunikasi bergerak semakin lengkap dan kompleks. Diantaranya dengan ditambahkannya perangkat penentu lokasi atau iGlobal Positioning System (GPS)/i ke dalam perangkat komunikasi bergerak. Ditambahkannya perangkat GPS pada perangkat komunikasi bergerak membuat kebutuhan antenna yang kecil dan kompak serta mampu beroperasi pada frekuensi multiband semakin meningkat. Antena GPS yang ada pada umumnya merupakan antena perangkat luar/eksternal, atau menggunakan beberapa antena internal yang beroperasi pada band frekuensi yang berbeda-beda dimana konstruksi ini kurang sesuai karena membuat perangkat selular menjadi lebih besar.
Oleh karena itu, pada penelitian ini akan dirancang sebuah antena yang kecil dan mampu beroperasi pada dua band frekuensi yang berbeda yaitu single band frekuensi cellular CDMA 826 MHz dan single band frekuensi civillian GPS L1. Antena yang dirancang berupa antena microstrip segiempat tiga susun dimana dua susunan yang pertama merupakan antena selular dengan patch yang dishort ke groundplane untuk mendapatkan ukuran yang kompak, dan susunan yang paling atas merupakan antena GPS single band.
Karena membutuhkan perhitungan yang rumit dan berulang-ulang maka rancang bangun antena ini menggunakan bantuan perangkat lunak Microwave office. Untuk antena selular didapat frekuensi band sebesar 92,4MHz (800,799-893,039) dengan gain yang diperoleh sebesar 5,64dB pada frekuensi tengah 826MHz. Sedangkan untuk antena GPS diperoleh frekuensi resonansi 1573,3MHz dengan Gain yang didapat sebesar 6.22dB. Perolehan ini cukup baik dan memenuhi spesifikasi yang dibutuhkan untuk dapat digunakan pada kebutuhan antena selular dan GPS.

Recently, mobile communication device technology has been growing rapidly. It has very complete features with the size become smaller. GPS or global positioning system is one of popular feature that has been integrated to the mobile communication device recently. That mean the demand of small, compact antenna that capable to operate in multiband frequency are become highly increase. Convensional GPS antenna generally were an external antenna, or use couple internal antenna that operate in different frequency were the construction are less fit because made the device become bigger.
Therefore on this thesis, we develope a compact internal dual band microstrip antenna that capable to operate in dualband frequency, cellular CDMA band (824MHz-894MHz) and GPS L1 (1575.75 MHz). The antenna which has been design is a triple stacked patch where the first two stacked is a cellular antenna with groundplane shorted using multiple pins. This construction made the antenna smaller and suitable to use for mobile communication. The highest stack patch use for single band GPS antenna.
The design need very complex calculation and use a computer software microwave office to solve the problem. The result is good enough to fulfill the spesification to use in both cellular and GPS band, the frequency band of the cellular antenna is 92,4 MHz(800,799MHz - 893,039MHz) with gain achievement 5,64dB at center frequency 826MHz and for frequency of GPS antenna is 1573.3 MHz with gain achievement 6.22dB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
T40797
UI - Tesis Membership  Universitas Indonesia Library
cover
Mayang Dewi K.
"Planar Inverted F Antenna (PIFA) merupakan antena yang memiliki dimensi yang lebih kecil dibandingkan dengan antena mikrostrip segi empat biasa dengan dimensi ?/2, PIFA hanya memiliki dimensi sebesar ?/4. Antena ini sangat cocok untuk diimplementasikan pada divais-divais yang berukuran kecil karena tidak akan memakan banyak ruang. WiMAX merupakan teknologi wireless yang menyediakan akses data kecepatan tinggi dengan cakupan area yang luas. Dan penggunaannya di Indonesia sudah dimulai mulai tahun 2009 ini.
Tujuan dari skripsi ini adalah merancang antena PIFA yang dapat bekerja pada dua frekuensi WiMAX yaitu 2.3 GHZ (2.3 s.d 2.4 GHz) dan 3.3 GHz (3.3 s.d. 3.4 GHz). Sesuai dengan standar WiMAX di Indonesia.
Hasil pengukuran menunjukkan antena bekerja pada frekuensi 2,44-2,63 GHz dengan nilai return loss terendah mencapai -14,559 dB pada frekuensi 2,52 GHz. Dan pada frekuensi 3,26-3,45 GHz dengan nilai terendah return loss terendah mencapai -19,946 dB pada frekuensi 3,32 GHz. Serta memiliki bandwidth 190 MHz untuk kedua frekuensi tersebut. Pola radiasi pada frekuensi 3,3 GHz menunjukkan medan E dan medan H cenderung berbentuk unidirectional, untuk medan E main lobe maksimum mengarah ke sudut 340_ dan medan H ke arah 240_. Medan E memiliki HPBW sebesar 20_ dan medan H sebesar 100.

Planar Inverted F Antenna (PIFA) is an antenna that has more compact size compared to microstrip rectangular with dimension ?/2, PIFA just ?/4. PIFA supports devices with compact size. WiMAX (Worldwide Interoperability for Microwave Access) is a wireless communication technology that support high rate data access and wide coverage area. And the implementation in Indonesia begins in 2009.
The purpose of this research is to design a dual band PIFA that can be used for WiMAX application. The WiMAX frequencies that are chosen are 2.3 GHz (2.3-2.4 GHz) and 3.3 GHz (3.3-3.4 GHz), which is the WiMAX frequencies standard for Indonesia.
The measurement result shows the antenna works at 2.44-2.63 GHz with the lowest return loss is -14.559 dB at fequency 2.52 GHz. And 3.26-3.45 GHz with the lowest return loss -19.946 dB at frequency 3.32 GHz. It has 190 MHz of bandwidth for both of frequencies. The radiation pattern shows unidirectional pattern for frequency at 3.3 GHz. For E field maximum main lobe with direction to angle of 340_ and H field with direction to angle 240_. The HPBW, E field is 20_ and H field is 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51448
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rafi
"Pada penelitian ini, dirancang sebuah antena dual band Multi-Input Multi-Output loop yang bekerja pada frekuensi 5G di Indonesia, yaitu 2,5 GHz dan 3,5 GHz, dengan VSWR ≤ 2, bandwidth ≥ 100 MHz, dan mutual coupling < 20 dB. Dalam simulasi, antena loop mencapai frekuensi kerja yang diinginkan dengan VSWR < 2. Antena pertama memiliki bandwidth 160 MHz pada frekuensi rendah dan 300 MHz pada frekuensi tinggi. Antena kedua memiliki bandwidth 180 MHz pada frekuensi rendah dan 180 MHz pada frekuensi tinggi. Namun, saat antena difabrikasikan, bandwidth pada frekuensi rendah antena pertama hanya mencapai 10 MHz dan pada frekuensi tinggi mencapai 100 MHz. Sedangkan pada antena kedua, bandwidth pada frekuensi rendah adalah 70 MHz dan pada frekuensi tinggi adalah 140 MHz. Nilai mutual coupling terbesar dalam simulasi adalah -17,5 dB, sedangkan pada pengukuran faktual adalah -20 dB.

In this research, a dual-band Multi-Input Multi-Output (MIMO) loop antenna was designed to operate at 5G frequencies in Indonesia, specifically 2.5 GHz and 3.5 GHz, with VSWR ≤ 2, bandwidth ≥ 100 MHz, and mutual coupling < 20 dB. In the simulation, the loop antenna achieved the desired operating frequencies with VSWR < 2. The first antenna exhibited a bandwidth of 160 MHz at the lower frequency and 300 MHz at the higher frequency. The second antenna had a bandwidth of 180 MHz at the lower frequency and 180 MHz at the higher frequency. However, when the antennas were fabricated, the bandwidth of the first antenna at the lower frequency was only 10 MHz, and at the higher frequency, it reached 100 MHz. As for the second antenna, the bandwidth at the lower frequency was 70 MHz, and at the higher frequency, it was 140 MHz. The maximum mutual coupling value in the simulation was -17.5 dB, while in the actual measurement, it was -20 dB."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>