Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 118553 dokumen yang sesuai dengan query
cover
Ngantung Erland Jeremia
"Analisis regresi adalah salah satu metode yang digunakan dalam menganalisisdata. Metode yang sering digunakan untuk menaksir parameter dalam modelregresi linier adalah ordinary least square OLS. Metode OLS akan memberikantaksiran terbaik ketika semua asumsinya terpenuhi. Namun pada kenyataannya,asumsi tersebut seringkali tidak terpenuhi. Asumsi yang seringkali tidak terpenuhiadalah adanya multikolinieritas dan adanya pencilan outlier. Multikolinieritasakan membuat variansi taksiran parameter regresi menjadi sangat besar, sedangkanoutlier akan membuat taksiran parameter menjadi bias. Jika kedua pelanggaranasumsi ini terjadi pada data yang akan dianalisis digunakan robust jackknife ridgeregression. Robust jackknife ridge regression adalah regresi yang punya sifatrobust sehingga tidak terpengaruh oleh outlier dan menggunakan metode ridgeuntuk mengatasi masalah multikolinieritas serta menggunakan metode jackknifeuntuk mereduksi bias yang dihasilkan metode ridge. Metode yang digunakanuntuk mencapai sifat robust adalah MM-estimation sehingga taksiran yangdihasilkan punya breakdown point serta efficiency yang tinggi.

Regression Analysis is one of many methods used for analyzing data. Method thatusually used for estimating parameter in linear regression model is ordinary leastsquare OLS . OLS will give best estimator when all the assumptions are met. Butin reality, sometimes not all the assumptions are met. Assumptions that usuallyviolated are multicollinearity and outlier. Multicollinearity will make variance ofthe estimated parameter become large, while outlier will make the estimatedparameter become biased. If this two violation of assumptions happened, robustjackknife ridge regression is used. Robust jackknife ridge regression is regressionthat have robust property so that it will not affected by outlier and using ridgemethod to handle multicollinearity with jackknife method to reduce biased fromridge method. Method used to achieve robust property is MM estimation so thatthe estimated parameter have high breakdown point and high efficiency.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68662
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tanjung, Alfian Rizqy
"Terdapat beberapa cara untuk memprediksi harga saham, ada yang menggunakan analisis runtun waktu, harga saham terdahulu, maupun menggunakan indikator teknis. Indikator teknis merupakan perhitungan matematis terhadap harga atau volume transaksi saham yang hasilnya dapat digunakan untuk memahami kecenderungan harga saham. Regresi ridge merupakan suatu metode regresi yang mampu mengatasi masalah dimana variabel-variabel regresornya tidak bebas linier. Regresi kernel ridge merupakan kombinasi antara regresi ridge dengan metode kernel dengan tujuan agar dapat memberikan hasil prediksi yang lebih baik. Pada skripsi ini, metode regresi ridge dan regresi kernel ridge akan diimplementasikan untuk memprediksi harga saham pada 12 perusahaan. Hasil percobaan menunjukkan bahwa metode regresi kernel ridge memberikan akurasi yang lebih baik daripada metode regresi ridge untuk beberapa perusahaan.

There are various way for predicting stock prices, some using time series analysis, past stock prices, or technical indicator. Technical indicator is a mathematical calculation over the stock prices or stock transaction volume that can be used to understand the stock price trend. Ridge regression is a regression method that can be used to solve the problem when some of the regressor variables are linearly dependent. Kernel ridge regression is a combination of ridge regression and kernel method in purpose to get better prediction. This skripsi will implement ridge regression and kernel ridge regression for stock prices forecasting of 12 companies. The result shows that kernel ridge regression gives better accuracy for stock price forecasting than ridge regression for some companies."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46703
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rumere, Faransina A.O.
"Analisis regresi merupakan salah satu teknik dalam statistika yang digunakan untuk mengetahui hubungan antar variabel respon dan satuatau lebih variabel regressor. Metode penaksiran parameter regresi yang umum digunakan adalah metode least square. Dalam penaksiran parameter regresi, banyak permasalahan yang muncul salah satunya adalah multikolinearitas. Multikolinearitas menghasilkan taksiran yang tidak stabil, sehingga diperlukan metode lain untuk mengatasi multikolinearitas yang diperkenalkan oleh Hoerl dan Kennard 1970 yaitu metode ridge regression dengan cara kerjanya adalah menambahkan konstanta bias ridge pada matriks X 39;X. Sarkar 1992 dan Grob 2003 mengembangkan metode tersebut dengan memanfaatkan informasi prior dari parameter - dan memperkenalkan metode restricted ridge regression. Berger 1980 mendefinisikan informasi prior untuk parameter - adalah suatu informasi non sampel yang muncul dari pengalaman masa lalu dan keputusan dari ahli dengan situasi yang hampir sama dan memuat parameter ? yang sama. Dalam skripsi ini penggunaan metode restricted ridge regression diaplikasikan untuk mengatasi multikolinearitas pada data Portland Cement dan menghasilkan MSE yang lebih kecil dibandingkan metode least square dan ridge regression.

Regression analysis is a technique in stastisticsto analyse the relationship between a response variable and one or more regressor variable's. Ordinary Least Square method is commonly used to estimate parameter's. Most frequently occurring problem in multiple linier regression analysis is the presence of multicolinearity. Multicollinearityin least square estimation produces estimation with large variance, so another method is needed to overcome the multicollinearity. Hoerl and Kennard 1970 introduced a new method called ridge regression by addingaconstant bias ridge to matrix X 39 X. Sarkar 1992 and Gro 2003 developed a method usingthe prior information of the parameter and introduced the restricted ridge regression method. Berger 1980 defined prior information of the parameter as a non sample information arising from past experiences and based on the opinions of an expertice with similar situations and containing the same parameters. This thesis will explain the use of restricted ridge regression method to overcome the presence of multicolinearity in regression model for Portland Cement dataset and produce smaller MSE than least square and ridge regression estimator.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Effrida Betzy Stephany
"Analisis regresi linier adalah suatu teknik dalam statistika untuk memodelkan dan menganalisis hubungan linier antara variabel respon dengan variabel regresor. Metode penaksiran parameter regresi yang umum digunakan adalah metode ordinary least square (OLS) yang menghasilkan taksiran yang dinamakan taksiran least square. Dalam analisis regresi linier berganda, masalah yang sering terjadi adalah multikolinieritas. Multikolinieritas membuat penaksiran dengan menggunakan metode OLS menghasilkan taksiran least square yang tidak stabil, sehingga pada skripsi ini akan dibahas metode lain untuk mengatasi permasalahan ini. Metode yang diperkenalkan untuk mengatasi multikolinieritas diantaranya adalah metode GRR yang menghasilkan taksiran generalized ridge. Taksiran ini merupakan taksiran yang bias. Metode ini masih memiliki kekurangan, yaitu bias yang dihasilkan tidak dijamin akan selalu bernilai kecil. Untuk itu, Singh, Chaubey, dan Dwivedi (1986) memperkenalkan metode Jackknife Ridge Regression (JRR) yang menghasilkan taksiran Jackknife Ridge Regression. Taksiran ini akan mereduksi bias yang dihasilkan oleh taksiran generalized ridge sehingga terkait dengan data yang digunakan, nilai mean square error taksiran ini lebih kecil dibanding taksiran generalized ridge maupun taksiran least square.

Regression linear analysis is a statistical technique for modeling and investigating the linear relationship between the response variable and regressor variable. Ordinary least square (OLS) method is commonly used to estimate parameters and yields an estimator named least square estimator. Most frequently occurring problem in multiple linear regression analysis is the presence of multicollinearity. Estimation using OLS method in multicolinearity caused an unstable least square estimator, therefore this undergraduate thesis will explain other method which can solve this problem such as GRR method that yields a bias estimator, named generalized ridge estimator. Unfortunately, this method still has a shortcoming because the bias in resulting estimator is not always guaranteed to be small. To solve this problems, Singh, Chaubey, and Dwivedi (1986) introduced Jackknife Ridge Regression (JRR) method that yields Jackknife Ridge Regression estimator. This estimator will reduce the bias of generalized ridge estimator, thus related to the data used, the resulting mean square error value of this estimator is smaller than the two methods.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S57991
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutapea, Erixon
"ABSTRAK
Tugas akhir ini membahas teori metoda jakknife. Jackknife adalah suatu metoda untuk mereduksi bias dari suatu penaksir dengan penggunaan ulang sampel. Hasil procedur ini biasanya suatu penaksir yang hampir tidak bias. Juga dibahas aplikasinya pada taksiran ratio dan analisa diskriminan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1989
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Huber, Peter J.
New York: John Wiley & Sons, 1981
519.5 HUB r
Buku Teks  Universitas Indonesia Library
cover
Melati Ayuwangi
"Runtun waktu merupakan barisan data yang diukur pada interval waktu yang periodik. Pada pengambilan data runtun waktu seringkali ditemukan adanya outlier, yang dapat mempengaruhi taksiran parameter autoregressive dan peramalan data. Pada skripsi ini diperkenalkan teknik baru untuk mendeteksi outlier pada model autoregressive dan mengidentifikasi jenis outlier sebagai additive atau innovation. Teknik ini diperkenalkan oleh Allan McQuarrie dan Chih L. Tsay, dan dapat digunakan tanpa diketahuinya model order sebenarnya, waktu terjadinya outlier, dan jenis outlier. Pertama, akan dicari taksiran besaran outlier yang meminimumkan residual sum of square (SSE). Kemudian dari taksiran tersebut akan didapatkan pengurangan terhadap SSE yang nantinya akan digunakan untuk mendapatkan besaran pendeteksian outlier dan juga digunakan untuk mengidentifikasi jenis outlier. Akan dicari pula penaksir yang robust untuk standar deviasi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Huber, Peter J.
"Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition."
Philadelphia: Society for Industrial and Applied Mathematics, 1996
e20448590
eBooks  Universitas Indonesia Library
cover
Yeni Pitrianingsih
"Analisis regresi merupakan salah satu teknik dalam statistika yang digunakan untuk menginvestigasi dan memodelkan hubungan antara variabel respon dan variabel regresor. Pada skripsi ini akan dimodelkan hubungan satu variabel respon dengan beberapa variabel regresor menggunakan model regresi linier berganda dimana antar variabel regresor tidak saling bergantung linier. Adanya multikolinieritas menyebabkan taksiran least square tidak stabil dan bisa memberikan informasi yang salah. Taksiran ridge adalah taksiran parameter model regresi yang umumnya digunakan untuk mengatasi hal tersebut. Tetapi ketika terjadi multikolinieritas yang kuat, variansi taksiran ridge tidak berbeda jauh dengan variansi taksiran least square. Masalah lainnya adalah konstanta taksiran ridge yang sulit untuk ditentukan. Untuk mengatasi masalah tersebut, Kejian Liu (1998) memperkenalkan taksiran Liu yang memiliki dua kelebihan dibandingkan taksiran ridge yaitu skalar mean square error (mse) yang lebih kecil dibandingkan mse taksiran ridge dan konstanta taksiran Liu yang mudah ditentukan.

Regression analysis is a statistical technique for investigating and modelling the relationship between the response variable and regressor variable. This skripsi modelling the relationship between one response variable and several regressor when there is no linear relationship between the regressors. In presence of multicollinearity, the least square estimator is unstable and may gives misleading information. Ridge estimator is the most common estimator to overcome this problem. But when there exist severe multicollinearity, variance of ridge estimator almost same with variance of least square estimator. The other problem is a constant of ridge estimator is difficult to specified. To solve this problem, Kejian Liu (1998) proposed Liu estimator that have two advantages over the ridge estimator are Liu estimator has less scalar mean square error (mse) than mse of ridge estimator and a constant of Liu estimator can specified easily."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46049
UI - Skripsi Membership  Universitas Indonesia Library
cover
Efron, Bradley
"The jackknife and the bootstrap are nonparametric methods for assessing the errors in a statistical estimation problem. They provide several advantages over the traditional parametric approach: the methods are easy to describe and they apply to arbitrarily complicated situations; distribution assumptions, such as normality, are never made.
This monograph connects the jackknife, the bootstrap, and many other related ideas such as cross-validation, random subsampling, and balanced repeated replications into a unified exposition. The theoretical development is at an easy mathematical level and is supplemented by a large number of numerical examples.
The methods described in this monograph form a useful set of tools for the applied statistician. They are particularly useful in problem areas where complicated data structures are common, for example, in censoring, missing data, and highly multivariate situations."
Philadelphia: Society for Industrial and Applied Mathematics, 1994
e20443362
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>