Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 111845 dokumen yang sesuai dengan query
cover
Musthafa Mursyid
"ABSTRAK
Li4Ti5O12 lithium titanate merupakan salah satu material anoda yang mempunyai performa yang cukup baik karena tidak mengalami SEI Solid Electrolyte Interface . Li4Ti5O12 disintesis menggunakan metode sol-gel dan Solid state dengan memakai sumber ion lithium LiCO3. SiOC merupakan material keramik yang disintesis dari silicon oil untuk memperbaiki kelemahan Li4Ti5O12. Silikon oil dicampurkan secara langsung dengan Li4Ti5O12 dan diaduk didalam beaker glass, kemudian dilakukan pemanasan pada suhu 350oC.. XRD menunjukan adanya fasa spinel LTO, TiO2 dan dengan kadar Si kristalin sangat sedikit. Melalui perhitungan didapatkan ukuran partikel Li4Ti5O12 sebesar 0,08 ?m. SEM-EDX menunjukan persebaran unsur-unsur pada sampel, dimana Si, C, dan O merupakan unsur utama penyusun SiOC. Pada pengujian EIS, penambahan kadar silicon oil menyebabkan Nilai hambatan dari material anoda LTO meningkat artinya konduktivitas dari material anoda mengalami penurunan. Pada pengujian CV, penambahan kadar silicon oil menurunkan kapasitas spesifik dari baterai, disebabkan oleh penurunan kualitas LTO ketika dilakukan pemanasan lanjut dan terbentuknya produk samping pengotor dari silicon oil tersebut yang menghambat pergerakan ion litium ketika proses litiasi dan delitiasi.

ABSTRAK
Li4Ti5O12 lithium titanate is one of the most promising material for anode, because reducing the form of SEI. Li4Ti5O12 were synthesized by sol gel and solid state method with LiCO3 as lithium ion source. SiOC is a ceramic material that synthesized from silicon oil to overcome the weakness of Li4Ti5O12. Silicon oil is adding to Li4Ti5O12 powder and mixed in the beaker glass, subsequently heated at 350oC. XRD shows the existed of LTO spinel, TiO2 and small amount of Si crystalline. From calculation the size of Li4Ti5O12 particle is measured the value is 0,08 m. SEM EDX shows the distribution of element on the sample, where Si, O, and C are the main element that construct the SiOC ceramic. The lowest electrolyte resistance obtained at pure Li4Ti5O12. With the increasing silicon oil value, the specific capacity of battery decreased from CV. It is because of heated the quality of Li4Ti5O12 is decreased and forming a side product that inhibit the movement of lithium ion during lithiation and delithiation."
2017
S68032
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Chandri Egieara
"SiOC@C adalah kandidat anoda lithium ion LIB yang diharapkan dapat menekan ekspansi volume tinggi silikon Si melalui penambahan karbon aktif sebagai lapisan penyangga. Silicon oxycarbide SiOC diperoleh dari minyak silikon kaya fenil melalui pirolisis pada 900 C dalam mengalirkan gas Ar. Variasi sampel yang digunakan adalah 4, 7, 10 wt. SiOC dan sampel karbon murni juga disiapkan untuk perbandingan. Dari melakukan tes karakterisasi, ditemukan bahwa puncak ditampilkan dalam hasil XRD milik SiOC.
Gambar SEM menunjukkan mikro berpori dengan pemetaan unsur Si, C, dan O. Menurut tes Brunner-Emmet-Teller BET, luas permukaan terbesar 542.738 m2g-1 diperoleh pada 10 berat SiOC. Berdasarkan hasil pengujian kinerja, kapasitas discharge yang diperoleh pada kondisi prima 10 wt SiOC adalah 223,3 mAh g-1.

SiOC C is a lithium ion battery LIB anode candidate that is expected to suppress the high volume expansion of silicon Si through the addition of activated carbon as a buffer layer. Silicon oxycarbide SiOC was obtained from phenyl rich silicone oil through pyrolysis at 900oC in flowing Ar gas. The variation of samples used were 4, 7, 10 wt SiOC and a pure carbon sample was also prepared for comparison. From conducting the characterisation tests, it is discovered that the peaks displayed in XRD result belong to SiOC.
SEM images show a porous microstructure with a few agglomerates present and the EDS result exhibits an elemental mapping of Si, C, and O. According to Brunner Emmet Teller BET test, the largest surface area of 542.738 m2g 1is obtained at 10 wt SiOC. Based on the performance test result, the discharge capacity obtained at the prime condition of 10 wt SiOC is 223.3 mAh g 1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laksamana Zakiy Ramadhan
"Lititum Titanat Oksida Li4Ti5O12 dipertimbangkan menjadi elektroda anoda pada baterai Litium Ion. LTO adalah kandidat yang menjanjikan untuk menggantikan Grafit. Grafit memiliki kapasitas yang tinggi, namun disamping itu, keamanan dari material ini dipertanyakan, pembentukan struktur dendritik yang dapat menyebabkan hubungan arus pendek atau konslet akhir-akhir ini banyak di diskusikan. Oleh karena itu LTO dengan properti lsquo;zero strain rsquo;, dimana tidak ada perubahan volume selama interkalasi adalah kandidat yang menjajikan. Dibandingkan dengan grafit, LTO memiliki kapasitas yang kecil, oleh karena itu penambahan elemen lain untuk meningkatkan kapasitas dari LTO dibutuhkan. Dalam penelitian ini, penambahan Sn dalam LTO telah dilakukan, penambahan Sn bertujuan untuk meningkatkan kapasitas dan konduktifitas. Menggunakan metode sol-gel untuk mensintesis LTO, dan diikuti oleh metode solid-state, LTO di campur dengan Sn menggunakan HEBM High energy Ball Mill , beberapa penambahan konsentrasi Sn dilakukan, yaitu 10 , 20 , 30. Karakterisasi material telah dilakukan menggunakan SEM-EDS, BET, XRD.
Dari hasil BET, penambahan Sn mengakibatkan berkurangnya surface area. Pada hasil SEM-EDS dari lembaran anoda, memperlihatkan aglomerasi dan distribusi yang buruk dari partikel, dari hasil XRD menunujukan adanya pengotor berupa TiO2 Rutile. Pembuatan baterai sel setengah telah dilakukan, dengan Litium logam sebagai Anoda, LTO dan Sn sebagai Katoda. Diikuti dengan pengujian performa electrokimia, yaitu EIS, CV, CD. EIS dilakukan sebelum dan sesudah tes CV, EIS sebelum tes CV menunjukan LTO dengan 30 kandungan Sn memiliki konduktifitas yang paling tinggi, sementara untuk EIS setelah CV, menunjukkan LTO dengan 20 kandungan Sn memiliki konduktifitas paling tinggi, Sn yang berlebih akan mengakibatkan penurunan performa karena fenomena Pulverisasi. Hasil CV menunjukan adanya dua peak pada masing-masing elemen, menunjukan reversibilitas dari reaksi. Pada hasil CD, LTO dengan 20 kandungan Sn memiliki kapasitas paling baik, oleh karena itu penambahan Sn yang optimum ialah 20.

Lithium Titanate Oxide Li4Ti5O12 has been considered as anode electrode in Lithium Ion Batteries. LTO is a promising candidate to replace Graphite. Graphite has high capacity, but despite their superiority, safety concern of this material is questioned, formation of dendritic structure which leads to short circuit is commonly discussed. Thus, LTO with zero strain property, where there is no volume change during intercalation is a promising candidate. Compared with graphite, LTO has small capacity, thus addition of other elements to increase its capacity is required. In this experiment, addition of Sn in LTO was done, addition of Sn purposed to increase its capacity and conductivity. Using sol gel method to synthesis LTO, and followed by solid state method, LTO is mixed with Sn using HEBM High energy Ball Mill . Various Sn concentration was added, which are 10 , 20 , 30. Material characterization in this experiment was using SEM EDS, BET, XRD.
From BET result, addition of Sn decrease its surface area, SEM EDS result of layered anode shows agglomeration for Sn element and poor particle distribution in layered anode, XRD result shows impurities which is TiO2 Rutile. Half cell battery fabrication was done using Lithium metal as anode and LTO Sn as cathode. Followed by electrochemical performance test, which are EIS, CV, CD. EIS performed before and after CV test, from EIS before CV results, LTO with 30 of Sn has highest conductivity, for EIS after CV, LTO with 20 of Sn has highest conductivity, excessive Sn concentration leads to performance decrease because of pulverization. From CV result, two anodic and two cathodic peaks are shown, which indicates reversible reaction of LTO and Sn, also from CV test, highest capacity is attribute to LTO with 20 of Sn with 168,9 mAh g. From CD result, LTO with 20 of Sn has the most stable performance, 30 of Sn considered as excessive addition of Sn, thus LTO with 30 of Sn has poor electrochemical performance.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richard
"Semakin meningkatnya kebutuhan dan kesadaran akan pemakaian energi baru dan terbarukan (EBT) memaksa piranti penyimpanan energi untuk bekerja dengan lebih baik. Melalui penelitian ini, dihasilkan kapasitor lithium-ion (KLI) dengan kapasitas yang lebih baik dari penelitian sebelumnya. Pada penelitian ini, kapasitor lithium ion setengah sel disusun menggunakan elektroda berbahan karbon aktif dengan memanfaatkan katoda berbahan dasar green coke. Pengujian BET menunjukkan bahwa proses aktivasi dapat menghasilkan karbon aktif dengan luas permukaan yang sangat tinggi, mencapai  2024 m²/g. Sementara pengujian elektrokimia KLI menunjukkan bahwa semakin tinggi SSA, maka kapasitasnya menjadi lebih besar, dan pada penelitian ini, dicapai energi spesifik sebesar  0,4256 Wh/kg dan daya spesifik 1,7024 W/kg dengan kapasitas KLI 25 mAH.

The increasing need and awareness of the use of new and renewable energy forces energy storage devices to work better. Through this research, lithium-ion capacitors are produced with better capacity than previous studies. In this study, half-cell lithium ion capacitors (LIC) were arranged using electrodes made from activated carbon using green coke-based cathodes. BET testing shows that the activation process can produce activated carbon with a very high spesific surface area (SSA), reaching 2024 m²/g. While LIC's electrochemical testing showed that the higher the SSA, the greater the capacity, and in this study, a specific energy of 0.4256 Wh/kg and a specific power of 1.7024 W/kg and a LIC of 25 mAH was achieved."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Shania Debora Rouli
"Lithium Titanate LTO adalah salah satu material anoda yang memiliki performa cukup baik karena sifatnya yang zero-strain. Pada penelitian ini, LTO disintesis menggunakan metode sol-gel dan hidrotermal mekanokimia dengan LiOH sebagai sumber ion litium. Silicone Oxycarbide SiOC merupakan material keramik yang disintesis melalui proses pirolisis sederhana prekursor silicone oil. Karbon yang digunakan pada penelitian ini merupakan karbon yang telah dilakukan proses aktivasi sehingga diperoleh karbon aktif dengan ukuran pori yang tinggi. Penambahan karbon aktif ke LTO dilakukan pada saat proses sol-gel, sedangkan penambahan SiOC ke LTO-C dilakukan pada saat proses pembuatan slurry. SEM-EDS menunjukkan perserbasaran dari unsur-unsur pada sampel dimana terdapat Ti, F, Si, O, dan C. Selain itu karakterisasi SEM-EDS juga memperlihatkan adanya peningkatan jumlah karbon pada setiap sampel. XRD menunjukkan adanya fasa spinel LTO dan fasa pengotor seperti TiO2 rutile dan anatase, serta Li2TiO3. Pada pengujian performa EIS, resistivitas rendah menyatakan konduktivitas tinggi. Pada penelitian ini konduktivitas tinggi dimiliki oleh LTO-1 C/SiOC. Selain itu dilakukan pengujian performa CV dan CD dimana diperoleh kapasitas spesifik tertinggi yaitu pada sampel LTO-5 /SiOC.

Lithium Titanate LTO is one of the anode material that has good performance because of its unique properties which is zero strain. In this study, LTO was synthesized using sol gel method and mechanochemical hydrothermal with LiOH as the source of lithium ion. Silicone Oxycarbide SiOC is a ceramic material synthesized through a simple pyrolysis process of silicone oil precursors. Carbon used in this study is a carbon activated process so that activated carbon is obtained with high pore size. The addition of activated carbon to the LTO is done during the sol gel process, while the addition of SiOC to LTO C is performed during the slurry making process. SEM EDS shows the extent of the elements in the sample where Ti, F, Si, O, and C. are present. Also, SEM EDS characterization also shows an increase in the amount of carbon in each sample. XRD shows the presence of LTO spinel phase and impurity phases such as TiO2 rutile and anatase, and Li2TiO3. In EIS performance testing, low resistivity expresses high conductivity. In this research, high conductivity is owned by LTO 1 C SiOC. In addition, CV and CD performance tests were performed where the highest specific capacity was obtained in the LTO 5 SiOC samples."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sihombing, Dian Sepala
"ABSTRAK
Optimasi Anoda LTO-Sn dengan Penambahan Karbon Aktif pada Baterai Litium-ion Penelitian ini membahas mengenai optimasi anoda LTO-Sn dengan penambahan karbon aktif. Persen Sn yang ditambahkan adalah 5, 7.5, dan 12.5 berat. Sementara pada LTO dengan kadar karbon 5, 15 dan 25 berat, ditambahkan Sn 7.5 berat. Analisi sintesis material dilakukan dengan menguji XRD, BET dan SEM. Analisis performa baterai dilakukan dengan uji EIS, CV, dan CD. Didapatkan luas permukaan yang lebih besar dengan penambahan karbon. Pengamatan SEM juga menunjukkan morfologi yang lebih halus, ditunjukkan dengan ukuran partikel yang lebih kecil, walaupun masih terdapat aglomerat beras dan kecil. Hasil EIS menunjukkan penambahan Sn memberikan nilai konduktivitas yang lebih baik, sementara penambahan karbon menurunkan konduktivitas. Hasil CD menunjukkan penambahan Sn menurunkan kapasitas pada 12C sementara penambahan karbon menaikkan kapasitas yang bisa tercapai. Hasil XRD dan CV menunjukkan terdapat senyawa LTO, TiO2 rutile, TiO2 anatase, dan Sn. LTO dengan penambahan Sn 7.5 dan karbon 5 menjadi parameter optimum untuk mencapai kapasitas sebesar 270.2 mAh/g pada saat discharge dan LTO dengan penambahan Sn 12.5 menjadi sampel dengan kapasitas charge terbesar yaitu 191.1 mAh/g

ABSTRACT
Optimization of LTO Sn Anode with Activated Carbon Addition on Lithium ion Batteries This study discusses the LTO Sn anode optimization with the addition of activated carbon. Percent Sn added was 5, 7.5, and 12.5 wt. While the LTO with a carbon content of 5, 15 and 25 added 7.5 wt Sn. Analysis done by testing the material synthesis XRD, BET and SEM. Analysis of the performance of the battery is done by using EIS, CV, and CD. Obtained a larger surface area with the addition of carbon. SEM observations also show finer morphology, shown with a smaller particle size, although there are small and big agglomerates. EIS results showed the addition of Sn provides better conductivity value, while the addition of carbon to lower the conductivity. The CD results showed the addition of Sn lowering capacity at 12C while adding carbon to raise capacity that could be achieved at same C rates. The results of XRD and CV shows there are LTO compound, TiO2 rutile, TiO2 anatase, and Sn. LTO with the addition of Sn 7.5 and 5 carbon given optimum parameters to achieve a capacity of 270.2 mAh g at discharge. LTO with the addition of Sn 12.5 to the sample achieve a charge capacity 191.1 mAh g"
2017
T46920
UI - Tesis Membership  Universitas Indonesia Library
cover
Rifa Satria
"ABSTRAK
Senyawa Li4Ti5O12 atau yang biasa disingkat dengan LTO, adalah salah satu jenis senyawa yang sering digunakan untuk komponen anoda dalam baterai. Kelebihan yang dimiliki adalah usia pakai yang panjang akibat sifat zero strain yang dimiliki saat material mengalami insersi dan ekstraksi ion lithium. Namun kapasitas yang dimiliki masih tergolong rendah, yaitu bernilai 175 mAh/g. Oleh karena itu, untuk dapat meningkatkan kapasitas anoda LTO dilakukan pembuatan komposit LTO. Doping element yang digunakan adalah nano Si, dimana dengan penggunaan partikel berskala nano diharapkan dapat meningkatkan performa baterai lebih jauh sebagai efek dari luas permukaan partikel yang lebih besar. Dalam penelitian ini LTO disintesis dengan metode hidrothermal-mekanokimia sebelum dilakukan pencampuran dengan nano Si. Variasi persentase massa Si yang digunakan adalah 1 , 5 , dan 10 . Karakterisasi yang digunakan adalah XRD, SEM, serta TEM. Sementara untuk pengujian performa baterai dilakukan pengujian EIS, CV, serta CD. Penelitian ini akan membahas efek dari mixing Si pada performa komposit LTO/Si. Hasil pengujian CV menunjukkan bahwa kapasitas terbesar diperoleh pada sampel LTO/Si-10 dengan kapasitas sebesar 216.15 mAh/g.

ABSTRACT
Li4Ti5O12 or LTO is one of many compounds that could be used as anode in lithium battery. One of the main advantages of using LTO as an anode is its long cycle life which is affected by its zero strain property during insertion and extraction of lithium ions. Despite its advantages, LTO still has problems such as limited capacity on 175 mAh g. Researchers have tried many methods to increasing the capcaity of LTO, such as making a composite from LTO host. In this composite, nano Si is used as doping element because its high theoritical capacity could increase the overall capacity of the LTO composite. In this research, LTO was synthesized by hydrothermal mechanochemical methods before we combine it with nano Si. The mass variation of nano Si was 1 , 5 , and 10 in wt. XRD, SEM, and TEM were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of Si on the LTO Si composite performance. From the CV testing, it is known that the highest capacity was obtained from LTO Si 10 sample with 216.15 mAh g."
2017
S66667
UI - Skripsi Membership  Universitas Indonesia Library
cover
Narayana Yuliandono Radiawan
"Optimalisasi kinerja untuk anoda baterai lithium-ion LIBs dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 LTO yang digunakan disintesis melalui proses sol-gel solid-state dan langsung ditambahkan dengan ZnO-nanorods yang diperoleh dari proses penuaan dan annealing. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD.
Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen. Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10 berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4 berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 96,459 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4 berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7 berat dan 10 berat. Juga kapasitas 4 berat yang ditambahkan adalah 150,8 mAh/g dibandingkan dengan 7 berat dengan 134,1 mAh/g dan 10 berat dengan 118,3 mAh/g.

Performance optimization for anode of lithium ion batteries LIBs can be conducted by adding ZnO through sol gel solid state reaction. In this research, the Li4Ti5O12 LTO used was synthesized through sol gel solid state process and directly added with ZnO nanorods obtained from aging and annealing process. LTO ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM EDS respectively. Electrochemical performance of LTO ZnO was tested by EIS, CV, and CD.
ZnO nanorods characterization with SEM EDS results shows that the ZnO inside the LTO dispersed homogenously. Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt , although BET result shows at the optimum amount of surface area with 96.459 m2 g. Electrochemical performance result shows optimum performance in ZnO at 4 wt for its ability to withstand EIS test at 20C compared to 7 wt and 10 wt . Also, capacity of 4 wt added is 150.8 mAh g compared to 7 wt with 134.1 mAh g and 10 wt with 118.3 mAh g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>