Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155541 dokumen yang sesuai dengan query
cover
Ahmad Fauzi Arief
"ABSTRAK
Seluruh dunia, rumah kaca digunakan untuk membudidayakan pertumbuhan asing dari lingkungan. Dengan mengendalikan suhu dan jumlah air pada pertumbuhan suatu rumah kaca, tumbuhan dapat dikembangkan pada lingkungan ideal. Rumah kaca zaman sekarang dapat dikendalikan dengan sistem komputer tanpa butuh bantuan fisik dari manusia. Pada skripsi ini, dibuatkan rancangan sistem rumah kaca dengan menggunakan logika fuzzy untuk mengendalikan suhu dan kelembaban tanah. Tujuan skripsi adalah untuk merancang rumah kaca miniatur yang dikendalikan oleh mikrokontroler dengan menggunakan logika fuzzy yang berfungsi.

ABSTRACT
Greenhouses has been used all over the world to grow fruits and vegetables not native to the climate. By containing heat and regulating the amount of water or humidity in the greenhouse, plants are able to be cultivated in an ideal environment. Greenhouses nowadays can be completely controlled through a computerized system. In this thesis, we will design a greenhouse system utilizing fuzzy logic to regulate and maintain internal heat and humidity. The intended result of the system is a working simulated miniature greenhouse controlled and regulated by a microcontroller using fuzzy logic to control and regulate temperature and humidity."
2017
S67442
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanulang, Ridwan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38542
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffry Adityapriatama
"Dengan berkembangnya pembangunan perkotaan dan kebutuhan industri, semakin pipa panjang diperlukan. Untuk kebutuhan industri diperlukan suatu sistem system pengendalian yang kuat, adaptif, efisien, dan ramah lingkungan untuk memenuhi kebutuhan yang sangat besar. Pada penelitian ini telah dirancang sebuah sistem kendali berdasarkan kecerdasan buatan dengan logika fuzzy pada kontrol aliran air berdasarkan PLC. Pada penelitian ini sistem logika fuzzy menggunakan 2 input himpunan fuzzy yaitu error dan perubahan kesalahan. Setiap himpunan fuzzy menggunakan 5 fungsi keanggotaan yaitu negatif besar (NB), negatif sedang (NM), nol (ZO), positif sedang (PM), besar positif (PB). Sistem dapat melakukan kontrol debit sesuai kebutuhan. Sistem ini adalah pada komputer yang berfungsi sebagai pusat kendali dan mengambil data dari server OPC tempat data diambil dari PLC menggunakan komunikasi Ethernet yang terhubung langsung ke plant. Sistem kontrol berbasis logika fuzzy dioperasikan pada pabrik prototipe pada skala lab, dan analisis kinerja diverifikasi secara eksperimental. Data dapat langsung diambil dan dilihat menggunakan MATLAB SIMULINK. Berdasarkan hasil percobaan, dapat disimpulkan
kontrol menggunakan logika fuzzy lebih baik dari kontrol konvensional PID. Hasil kontrol menggunakan logika fuzzy mencapai kondisi tunak lebih cepat yaitu 24,24 detik tanpa overshoot dibandingkan dengan menggunakan PID yaitu ID 48,6 detik dengan overshoot 16,2%.
With the development of urban development and industrial needs, more and more long pipes are needed. For industrial needs, a strong, adaptive, efficient, and environmentally friendly control system is needed to meet enormous needs. In this research, a control system based on artificial intelligence has been designed with fuzzy logic on water flow control based on PLC. In this study, the fuzzy logic system uses 2 input fuzzy sets, namely error and error change. Each fuzzy set uses 5 membership functions, namely large negative (NB), medium negative (NM), zero (ZO), medium positive (PM), large positive (PB). The system can perform discharge control as needed. This system is on a computer that functions as a control center and retrieves data from the OPC server where data is retrieved from the PLC using Ethernet communication that is connected directly to the plant. The fuzzy logic based control system is operated in a prototype factory on a lab scale, and the performance analysis is verified experimentally. Data can be directly retrieved and viewed using MATLAB SIMULINK. Based on the experimental results, it can be concluded control using fuzzy logic is better than conventional control PIDs. The results of the control using fuzzy logic reached steady state faster, namely 24.24 seconds without overshoot than using PID, namely ID 48.6 seconds with 16.2% overshoot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andry Prima
"Pengendalian krane dengan kecepatan maksimum dengan sudut ayunn minimum diperlukan untuk memindahkan beban dengan aman serta cepat. Sehingga diperlukan pengendali yang mampu menentukkan besar tegangan berdasarkan beberapa input yaitu: sudut ayunan, kecepatan sudut ayunan, kecepatan, dan posisi dari trolley. Oleh karena itu pengendali fuzzy diajukan untuk digunakan sebagai pengendali tegangan input motor sebab mudah untuk diimplementasikan baik dalam bentuk intuisi manusia maupun dalam realisasi alat dalam kehidupan sehari-hari.
Model matematis dari krane kontainer yang sifatnya kompleks didapatkan dengan menggunakan formulasi Lagrange yang sederhaua dan sisternatis. Krane kontainer ini direpresentasikan dengan dua buah model utama yang saling berinteraksi satu dengan yang Iainnya. Komponen dinamika pertama meliputi dinamika trolley dan dinamika ayunan, sedangkan komponen yang kedua merupakan dinamika pengangkatan beban. Kedua model maternatis kedua sistem ini diturunkan secara terpisah satu terhadap yang lainnya, kemudian dengan logika fuzzy dibuat simulasi untuk uji gerak maju, gerak angkat, uji gangguan sudut awal dan uji variasi massa beban."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39823
UI - Skripsi Membership  Universitas Indonesia Library
cover
P. Hendarwan Budiarta
"Sistem simulasi yang diketengahkan dalam Tugas Akhir ini menggunakan algoritma pengaturan berbasis logika fuzzy. Logika fuzzy digunakan untuk mengatasi kesulitan pengendalian pada sistem yang memiliki sifat non-linieritas tinggi, di antaranya adalah pengemudian mobil. Akan dijelaskan model asli model yang disederhanakan, serta penentuan model fuzzy Takagi-Sugeno mobil. Sebagai pengendali digunakan kontroler fuzzy yang dioptimasi dengan persamaan Riccati. Dibahas juga pengujian kestabilan pengendalian. Dalam hal ini, logika fuzzy tidak hanya digunakan pada pengendali (kontroller) tetapi juga untuk memodelkan mobil (model fuzzy Takagi-Sugeno). Pada bagian akhir diberikan flowchart program simulasi dan Basil-hasil simulasi pada beberapa kondisi untuk menunjukkan pengaruh - kecepat:an, waktu cuplik, panjang mobil, dan besainya state feedback gain, K terhadap kinerja pemarkiran."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S38856
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandra Octaviani
"Tesis ini membahas perancangan pengendali berbasis logika fuzzy yang digunakan untuk pengendalian suhu barrel extruder beserta simulasinya. Model dinamika proses yang dikendalikan diturunkan berdasarkan aliran energi panas yang terjadi pada setiap barrel nya.
Perancangan pengendali ini dengan menggunakan Fuzzy Logic Toolbox Using Matlab. Fungsi keanggotaan yang digunakan berbentuk segitiga, dengan representasi untuk masukan pengendali terdiri dari 5 himpunan fuzzy, dan untuk keluarannya terdiri dari 6 himpunan fuzzy. Penalaran fuzzy yang digunakan pada tesis ini disusun berdasarkan Kaidah Mamdani, dengan mengacu pads 30 aturan fuzzy sesuai Fuzzy Associative Memories (FAO) yang dirancang.
Unjuk kerja dari sistem yang dikendalikan disimulasikan dengan Simulink Toolbox Using Matlab, dengan membuat rangkaian simulink dari keseluruhan sistem dan pengendalinya. Untuk analisanya dilihat unjuk kerja sistem yang dikendalikan berupa tanggapan waktu, yang dibandingkan dengan unjuk kerja yang meggunakan pengendali proporsional."
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tomy Kusbianto
"Telah dilakukan penelitian untuk mengendalikan sistem multi input multi output pada sistem penerangan lampu menggunakan metode fuzzy logic. Adapun penelitian tersebut memiliki karakteristik pengendalian yang multivariable. Dengan pengaruh sistem yang saling mengganggu maka sistem menjadi tidak stabil, sehingga dibutuhkan suatu bilangan decoupler untuk menstabilkan kembali sistem dari keadaan yang saling mempengaruhi. Pembuatan sistem ini dilakukan dalam skala laboratorium agar dapat mengetahui terlebih dahulu mengenai sistem multi input multi output sebelum terjun ke dunia industri yang banyak memakai suatu sistem multi input multi output.

Research was conducted to control the multi-input multi system output at lamp lighting system using fuzzy logic. The The research has the characteristics of multivariable control. With the influence of the system that interfere with each other, the system becomes stable, so it is necessary to stabilize the number decoupler back system from a state of mutual influence. Making these systems do at laboratory scale in order to be able to know in advance about the system multi input multi output before plunging into the world of industry that many use a multi-input multi-output system."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S29142
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Ibnul Gufron
"Dalam skripsi ini akan dijelaskan model dinamik robot beroda dengan kemudi differensial yang dikendalikan dengan pengendali fuzzy. Pengendaii fuzzy menggunakan dua kumpulan aturan pengambil keputusan yang disebut behavior (behavior penghindaran halangan dan behavior pencapaian tujuan). Behavior pencapaian tujuan akan dilaksanakan bila sensor tidak mendeteksi halangan atau bila titik tujuan lebih dekat dibanding jarak halangan yang terdeteksi. Seiain kondisi tersebut diatas maka behavior penghindaran halangan yang akan dijalankan.
Komponen-komponen yang dipergunakan dalam membentuk pengendalian tersebut dikelompokkan menjadi dua bagian, yakni masukan yang terdiri dari jarak terdekat pengukuran halangan oleh sensor, posisi tujuan relalif terhadap sudut heading robot dan jarak tujuan. Sedangkan keluaran adaiah beda tegangan begi motor penggerak roda robot. Pengendali fuzzy yang terdiri dari gabungan dua behavior ini membentuk 66 aturan.
Pada simulasi, kecepatan diasumsikan tetap dan jarak maksimum pengukuran sensor adalah 2 meter. Pada bagian akhir akan diberikan algoritrna progam simulasi dan hasil-hasil simulasi pada beberapa kondisi untuk menunjukkan kinerja sistem."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39853
UI - Skripsi Membership  Universitas Indonesia Library
cover
Augustinus P.
"Pembangkitan listrik hams memperhatikan pengendalian kecepatan putar turbin generator agar Iistrik yang dibangkitkan memiliki frekuensi yang stabil dan daya sinkron yang besar.
Pengendalian kecepatan putar pada turbin uap menggunakan Auromatic Generation Control (AGC) bertujuan agar response deviasi frekuensi tidak memiliki error steady-state serta mampu mengembalikan kepada kecepatan sinkronnya secepat mungkin sehingga daya sinkron sistem bertambah tinggi.
Pembahasan meliputi pemodelan sistem steam turbine-generator yang sederhana, konsep dasar Iogika fuzzy dan penerapannya sebagai pengendali. Analisis dilakukan terhadap transient stability dan steady-state strability pada sistem dengan pengendali Iogika fuzzy sebagai AGC yang mengalami gangguan (disturbance) pada beban dan tegangan. Serta unjuk kerjanya dibandingkan dengan sistem dengan pengendali PI.
Simulasi pengendali logika FLIZZY sebagai AGC dilakukan dengan bantuan perangkat lunak Simulink pada Matlab versi 5.3. Dari simulasi didapat bahwa pengendali logika Fuzzy tipe PFD sebagai AGC mampu menghilangkan error steady-state response deviasi frekuensi dengan cepat dan memiliki daya sinkron yang relatif bertambah tinggi dibandingkan pengendali PI."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aodah Diamah
"Fuzzy Model Reference Learning Control merupakan suatu teknik kendali yang dapat mengatasi keterbatasan pengendali fuzzy yang tidak memiliki suatu algoritma untuk mengkompensasi perubahan kondisi tau variasi yang besar dari sistem yang dikendalikannya, Fuzzy Model Reference Learning Control memiliki kemampuan untuk mengatasi adanya perubahan parameter sistem dengan menggunakan mekanisme pembelajaran. Sistem pengereman mobil merupakan sistem dengan parameter yang bervariasi, yaitu specific torque sehingga metoda Fuzzy Model Reference Learning Control diaplikasikan pada pengendali sistem ini. Pengendali menggunakan suatu model referensi pada mekanisme pembelajarannya yang merepresentasikan bagaimana suatu sistem perngereman diharapkan untuk berlaku. Hasil simulasi menunjukkan pengendali mampu memaksa sistem pengereman mobil yang dikendalikannya berlaku seperti model referensi walaupun dengan specific torque yang bervariasi."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39897
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>