Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127130 dokumen yang sesuai dengan query
cover
Muhammad Alfinuha Nabil
"ABSTRAK
Material plastik, seperti polipropilena PP , yang mengandung banyak hidrogen sangat potensial untuk digunakan sebagai sumber hidrogen pada co-pyrolysis bersama biomassa seperti bonggol jagung. Dengan mencampurkan keduanya, akan tercipta suatu efek sinergetik yang akan meningkatkan kualitas bio-oil yang dihasilkan. Investigasi yang mengarah pada fenomena efek sinergetik ini dievaluasi dengan menggunakan reaktor displacement untuk melakukan proses slow co-pyrolysis. Eksperimen yang melibatkan umpan yang didominasi biomassa, yaitu PP < 50 regime 1 , terjadi kontraksi pada reaktor kemudian diikuti dengan tidak berubahnya displacement dari silinder piston, sementara pada pirolisis umpan yang didominasi plastik, yaitu PP ge; 50 regime 2 menunjukkan adanya swelling dan contraction pada reaktor. Pada regime 1, sifat termoplastis tidak muncul pada char, sementara pada regime 2, sifat termoplastis muncul pada char. Eksperimen juga menunjukkan bahwa pada komposisi PP < 37,5 , char masih mengandung senyawa oksigenat, dan pada PP ge; 37,5 , char tidak mengandung oksigen. Sementara itu, pada komposisi PP 75 menunjukkan adanya perpindahan massa oksigen hasil pirolisis biomassa ke lelehan plastik. Hasil semua eksperimen di atas menunjukkan bahwa pirolisis umpan regime 2 mengindikasikan adanya interaksi yang kuat antara hasil pirolisis biomassa dan plastik PP yang mengarah ke efek sinergetik

ABSTRACT
Plastic material, such as polypropylene plastic PP , which has hydrogen content compared to that in biomass, is potential to be used as a hydrogen source for pyrolysis of biomass, such as corncobs. By mixing these two, certain synergistic effect will appear that will improve the quality and quantity of bio oil produced. Investigation of the phenomenon leading to the synergistic effect has been evaluated by using a displacement reactor in the form a tubular batch reactor to perform slow co pyrolysis. Feed compostion was varied at 12.5 , 25 , 37,5 , 50 , 62,5 , 75 , and 87.5 weight of PP . Experiment involving biomass dominated feeds, i.e. PP 50 regime 1 , reactor contracted followed by no displacement of reactor piston, while plastic dominated feeds, i.e. PP ge 50 regime 2 showed swelling and contraction of the reactor. Char in regime 1 showed that thermoplastic properties did not appear on char, while in regime 2, thermoplastic properties did appear on char. Experiment also showed that for PP 37,5 , char still contain oxygenated compounds, while for PP ge 37,5 , char contains no oxygen. Meanwhile, on plastic melt in PP 75 composition showed an oxygen mass transfer to the plastic melt from biomass. The results of all experiments show that co pyrolysis in regime 2 indicates a strong interaction between biomass and plastic leading to synergistic effect. "
2017
S67684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Hosea Widjaja
"Pemanfaatan sampah plastik menjadi biofuel merupakan salah satu keuntungan dari proses co-pyrolysis polipropilena (PP) dan Refined Bleached Deodorized Palm Oil (RBDPO). Penelitian kali ini bertujuan untuk menginvestigasi yield produk final co-pyrolysis (bio-oil yang menyerupai biodiesel) dengan meningkatkan kontribusi PP dan efek loading katalis pada yield co-pyrolysis PP-RBDPO yang rendah (yield sebelumnya 64% menjadi 76% dari keseluruhan massa produk co-pyrolysis) pada penelitian sebelumnya oleh Ramadhan et al. (2021) yang menggunakan katalis ZrO2/Al2O3TiO2 dengan keasaman yang lebih rendah jika dibandingkan dengan katalis Ni/ZrO2SO4 dan juga untuk menyelidiki efek sinergetik co-pyrolysis (efek yang meningkatkan yield dan komposisi bio-oil jika dibandingkan dengan pirolisis PP dan RBDPO secara terpisah). Efek kontribusi PP diuji menggunakan variasi 0, 50, dan 100% massa PP dari total massa feed keseluruhan dan efek loading katalis diuji menggunakan variasi 7, 9, dan 11% massa katalis dari total massa feed keseluruhan. Produk bio-oil kemudian dianalisis menggunakan GC-MS dan FTIR untuk menentukan komposisi dan ikatan kimianya. Sedangkan, katalis Ni/ZrO2SO4 akan dianalisis dengan XRD, TPR, TPD, BET, dan TGA untuk menentukan ukuran, tipe kristal, tingkat keasaman dan kebasaan, interaksi, dan ketahanan suhu katalis. Co-pyrolysis PP-RBDPO terbukti menciptakan efek sinergetik. Loading katalis tertinggi (11%) pada proses co-pyrolysis PP-RBDPO terbukti menghasilkan yield tertinggi (33%) dengan komposisi bio-oil paling baik dan menyerupai biodiesel yang memiliki rantai karbon dengan panjang C9 sampai C23 dengan ukuran yang paling umum sebagai C16 dan bertipe hidrokarbon paraffin
The use of plastic waste into biofuels is one of the advantages of the polypropylene (PP) and Refined Bleached Deodorized Palm Oil (RBDPO) co-pyrolysis process. This study aims to investigate the yield of the final co-pyrolysis product (bio-oil that resembles biodiesel) by increasing the contribution of PP and the effect of catalyst loading on the low yield of PP-RBDPO co-pyrolysis (previous yield of 64% to 76% of the overall mass of the co-pyrolysis product) in the previous study by Ramadhan et al. (2021) which used the ZrO2 /Al2O3TiO2 catalyst with lower acidity when compared to the Ni/ZrO2SO4 catalyst and also to investigate the synergistic effect of co-pyrolysis (effect that increases the yield and composition of bio-oil when compared with PP pyrolysis and RBDPO pyrolysis separately). The PP contribution effect was tested using variations of 0, 50, and 100% PP mass of the total feed mass and the catalyst loading effect was tested using variations of 7, 9, and 11% of the catalyst mass of the total feed mass. The bio-oil product is then analyzed using GC-MS and FTIR to determine its composition and chemical bonds. Meanwhile, Ni/ZrO2SO4 catalysts will be analyzed with XRD, TPR, TPD, BET, and TGA to determine the size, crystal type, acidity and alkalinity levels, interactions, and temperature resistance of the catalyst. PP-RBDPO co-pyrolysis was shown to create a synergistic effect. The highest catalyst loading (11%) in the PP-RBDPO co-pyrolysis process was proven to produce the highest yield (33%) with the best bio-oil composition and resembled biodiesel. which has a carbon chain with a length of C9 to C23 with the most common size as C16 and is of the paraffin hydrocarbon type.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Adythya Fernando
"ABSTRAK
Penelitian yang sudah dilakukan sebelumnya menunjukkan bahwa ada 2 regime reaksi co-pyrolysis yang memiliki perbedaan trend pada yield bio-oil-nya, yaitu regime dengan komposisi plastik dalam umpan reaktor kurang dari 40 regime 1 dan regime dengan komposisi plastik dalam umpan reaktor lebih dari 40 regime 2 .Penelitian yang dilakukan saat ini berhasil membuktikan bahwa hal tersebut merupakan pengaruh perpindahan panas bahan dalam reaktor. Perpindahan panas dipelajari dengan melihat suhu yang direkam oleh termokopel pada tujuh lokasi yang berbeda di dasar reaktor. Hasil yang didapatkan adalah pada regime 1, perpindahan panas terjadi dengan dominasi oleh radiasi ke biomassa, sedangkan pada regime 2 didominasi oleh konveksi ke plastik.Variasi komposisi pada regime 1 tidak berpengaruh kepada perubahan suhu dalam campuran sedangkan pada regime 2 menunjukkan semakin kecil komposisi biomassa maka semakin tinggi suhu campuran yang dicapai. Penelitian ini menunjukkan bahwa perpindahan panas belum terjadi dengan merata pada campuran sehingga pirolisis biomassa belum dapat mencapai pirolisis sekunder dengan baik sedangkan pirolisis plastik sudah menghasilkan distribusi produk yang merata.

ABSTRACT
The previous research shows that there are two regimes of co pyrolysis reaction which have different trend of bio oil rsquo s yield, they are the regime with plastic composition in reactor feed less than 40 regime 1 and regime with plastic composition in reactor feed more than 40 regime 2 .Current research has proved that it is the effect of heat transfer of materials in the reactor. The heat transfer was studied by looking at the temperature recorded by the thermocouple at seven different locations at the bottom of the reactor. The result is that in regime 1, heat transfer occurs dominanty by radiation to biomass, whereas in regime 2 it is dominated by convection to plastic.The variation of composition in regime 1 does not affect the temperature change in the mixture, while in regime 2 the smaller the composition of the biomass the higher the mixed temperature is achieved. This study shows that heat transfer has not occurred evenly on the mixture so that biomass pyrolysis has not been able to achieve the secondary pyrolysis well whereas plastic pyrolysis has produced an even distribution of the product."
2017
S67133
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julianto
"ABSTRAK
Pada penggunaan stirred tank reaktor dengan rasio Length/Diameter yang rendah, terjadi beberapa masalah dalam transfer panas, karena itu, fasa polar pada hasil pirolisis masih memiliki panjang rantai karbon yang panjang. Dengan mengubah cara feeding dari twice feeding, menjadi gradual feeding, diharapkan dapat meningkatkan jumlah fasa polar pada panjang rantai karbon rendah. Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Polipropilena adalah jenis plastik yang cukup banyak dihasilkan di Indonesia dan selain itu memiliki ratio Hydrogen/Carbon yang tinggi. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,75 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Dari eksperimen ini terlihat bahwa proses slow co pyrolysis memiliki 2 regime yang dapat terlihat dari jumlah peningkatan yield bio-oil dan peningkatan signifikan pada volume polar. Hasil FTIR dan GC-MS menunjukan adanya fasa polar yang dominan oleh karboksilat dan fenol, pada fasa polar dominan oleh alkena. Untuk digunakan sebagai bio-fuel, bio-oil memiliki nilai TAN total acid number yang rendah pada fasa polar, dan viskositas yang mendekati dengan bahan bakar komersial.

ABSTRACT
In the use of stirred tank reactors with low Length Diameter ratios, there are some problems in heat transfer, therefore, the polar phase on the pyrolysis results still has long carbon chain length. By changing the way feeding of the two step feeds, to gradual feeding, is expected to increase the number of polar phases at low carbon chain lengths. Corncobs are selected as biomass because of their high total cellulose content and abundant availability in Indonesia. Polypropylene is a type of plastic that is widely produced in Indonesia and other than it has a high Hydrogen Carbon ratio. By mixing the two, a synergetic effect will be created to improve the quantity and quality of the resulting bio oil. Operating conditions with a maximum temperature of 500oC, N2 flow rate of 0.75 L min, holding time of 10 min and a heating rate of 5oC min were used during the experiment. From this experiment we can see that the slow co pyrolysis process has 2 regimes that can be seen from the increasing amount of bio oil yield and the significant increase in polar volume. FTIR and GC MS results show the dominant polar phase by carboxylic and phenol, in the polar phase dominant by alkene. For use as bio fuel, bio oil has a low TAN value total acid number in polar phase, and viscosity is close to commercial fuel."
2017
S67872
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafira Deani Tiaradiba
"ABSTRAK
Dalam proses co-pyrolysis, Polipropilen berfungsi untuk menyingkirkan oksigen sehingga yield fraksi non-polar (non-teroksigenasi) menjadi lebih tinggi. Namun, kemampuan PP untuk menyita oksigen masih rendah karena hemiselulosa dan selulosa terurai sebagian besar pada suhu di bawah 400oC, sedangkan PP sebagian besar di atas 400oC. Oleh karena itu, keduanya hanya memiliki interval suhu dekomposisi secara bersamaan yang kecil untuk memungkinkan interaksi antara bonggol jagung dan PP. Dalam penelitian ini, katalis diperkenalkan pada proses co-pyrolysis untuk mengurangi suhu terendah dekomposisi massa PP menjadi kurang dari 400oC agar meningkatkan interval suhu dekomposisi bersamaan. Katalis zeolit diteliti dengan memvariasikan tipenya yakni alam dan sintetik (beta)​​ yang dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0%:100%, 50%:50%, dan 100%:0%. Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500oC, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 250 gram. Hasil penelitian ini menunjukkan terdapat pengaruh katalis baik zeolit alam maupun zeolit beta terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Dengan catalytic pirolisis, yield bio-oil cenderung menurun untuk semua variasi komposisi. Sebaliknya, yield char dan non condensable gas cenderung meningkat. Sedangkan, komposisi yang dominan dengan adanya katalis ialah alkana pada non polar dan metoksi pada H-NMR polar juga keton pada C-NMR polar. Pada produk bio-oil nonpolar, baik zeolit beta, zeolit alam, dan non katalis memiliki nilai branching index masing- masing yaitu 0,997; 1,052; dan 1,054 yang menunjukkan bio-oil nonpolar memiliki rantai karbon lurus dengan cabang lebih banyak apabila dibadingkan dengan bahan bakar komersial. Selain itu, nilai HHV yang dimiliki bio-oil diatas nilai produk bahan bakar bensin komersial yakni 47,93 untuk zeolit alam dan 47,95 untuk zeolit beta.

ABSTRACT
In the process of co-pyrolysis, Polipropylene serves to get rid of oxygen so that the yield of non-polar (non-oxygenated) fractions becomes higher. However, the ability of PP to confiscate oxygen is still low because hemicellulose and cellulose decompose mostly at temperatures below 400oC, while PP is mostly above 400oC. Therefore, both of them only have small decomposition temperature intervals to allow interaction between corn cobs and PP. In this study, catalysts were introduced in the co-pyrolysis process to reduce the lowest temperature of PP mass decomposition to less than 400oC in order to increase the intervals of concurrent decomposition temperatures. Zeolite catalysts were investigated by varying the types of natural and synthetic (beta) which were carried out at 3 ratios of corncob composition and polypropylene plastic, namely 0%: 100%, 50%: 50%, and 100%: 0%. The slow co-pyrolysis process takes place in a stirred tank reactor, with a final temperature of 500oC, a holding time of 10 minutes, a heating rate of 5oC / minute, and a total feed mass of 250 grams. The results of this study indicate that there are effects of catalysts both natural zeolite and beta zeolite on the yield and composition of bio-oil resulting from slow co-pyrolysis of corncob and polypropylene plastic. With catalytic pyrolysis, bio-oil yield tends to decrease for all variations in composition. Conversely, the yield of char and non-condensable gas tends to increase. Meanwhile, the dominant composition in the presence of a catalyst is alkane for non-polar and metoxy for H-NMR polar also ketone for C-NMR polar. In nonpolar bio-oil products, both beta zeolite, natural zeolite, and non-catalyst have a branching index value of 0.997; 1,052; and 1,054 which shows that non-polar bio-oil has more straight carbon chains with branches must be compared with commercial fuels. In addition, the HHV value of bio-oil above the value of commercial gasoline fuel products is 47.93 for natural zeolite and 47.95 for beta zeolite."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anissa Clarita
"Minyak kelapa sawit memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena kandungan trigliserida. Indonesia merupakan negara produsen kelapa sawit terbesar di dunia. Selama ini minyak kelapa sawit belum dimanfaatkan secara maksimal khususnya sebagai bahan baku industri. Padahal minyak kelapa sawit dapat dimanfaatkan sebagai energi terbarukan melalui proses slow co-pyrolysis. Dalam penelitian ini, trigliserida yang digunakan dari minyak goreng kelapa sawit. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Tujuan penelitian ini adalah untuk mengetahui pengaruh laju oenambahan plastik polipropilena terhadap yield dan kualitas bio-oil hasil slow co-pyrolysis minyak kelapa sawit. Penelitian ini dilakukan dalam reactor tabung berpengaduk pada suhu 550oC, heating rate 5oC/menit, kecepatan pengaduk 65 RPM dengan laju alir gas nitrogen 550 mL/min. Variasi yang dilakukan berupa penambahan jumlah % massa plastik polipropilena yang akan mempengaruhi yield dan komposisi dari bio-oil yang dihasilkan. Bio-oil dikarakterisasi dengan menggunakan GC-MS, dan FTIR. Efek sinergetik pada pirolisis PP-trigliserida tidak terjadi, sedangkan pada pirolisis PP-bonggol jagung terjadi saat komposisi PP 50% dan 75%. Bio-oil optimum dihasilkan pada komposisi PP 75% baik pada pirolisis PP-trigliserida dan PP-bonggol jagung.

Palm oil has high potential to be developed into bio-oil because of the content of triglycerides. Indonesia is the largest palm oil producer in the world. So far, palm oil has not been fully utilized, especially as an industrial raw material. Even though palm oil can be used as renewable energy through the slow co-pyrolysis process. In this study, the the triglyceride is from palm oil cooking oil. In addition, plastic waste is also abundant in Indonesia, especially polypropylene plastic. The purpose of this study was to determine the effect of the rate of addition of polypropylene plastic on the yield and quality of bio-oil produced by slow co-pyrolysis of palm oil. This research was conducted in a stirred tube reactor at a temperature of 550oC, heating rate of 5oC / minute, stirrer speed of 65 RPM with a nitrogen gas flow rate of 550 mL / min. The variation is in the form of increasing the mass% of polypropylene plastic which will affect the yield and composition of the bio-oil produced. Bio-oil is characterized by using GC-MS, and FTIR. The synergetic effect on PP-triglyceride pyrolysis did not occur, whereas in the pyrolysis of PP-corn hump occurred when the composition of PP was 50% and 75%. Optimum Bio-oil was produced in the composition of PP 75% both in PP-triglyceride pyrolysis and PP-corncobs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sidauruk, Juan Octavian Daniel
"Pirolisis berfungsi untuk mengubah sumber karbon polipropilena PP dalam bentuk padatan agar dapat menjadi bahan baku sintesis berupa gas. Variasi suhu dan waktu pirolisis dilakukan agar memperoleh hubungan antara keduanya dengan jumlah gas pirolizat yang terbentuk, yield CNT, dan kualitas CNT. Pirolisis dimulai dengan memanaskan PP pada rentang suhu 525-600°C untuk menghasilkan gas-gas pirolisis yang akan diuji kandungannya menggunakan GC-FID. Metode yang digunakan untuk memproduksi CNT dari plastik PP adalah metode flame synthesis dengan substrat berjenis stainless steel 316 wired mesh. Pada proses sintesis, SS 316 dipreparasi dengan oxidative heat treatment pada suhu 800°C selama 10 menit.
Gas hasil pirolisis kemudian dibakar pada suhu 800°C dengan dialiri gas oksigen selama 60 menit agar bereaksi menjadi CO yang kemudian menghasilkan deposisi CNT pada permukaan substrat katalitik. Uji karakterisasi dari sampel CNT yang dihasilkan menggunakan instrumen XRD, TEM dan SEM. Yield tertinggi dihasilkan pada sampel dengan suhu pirolisis 525°C dan waktu pirolisis 45 menit. Sementara itu, dari segi morfologi, struktur, diameter kristal, diameter partikel, fenomena pertumbuhan CNT yang terbaik diperoleh pada suhu pirolisis 525°C dan waktu pirolisis 30 menit yang mulai membentuk MWCNT dengan diameter rata-rata kristal sebesar 23,81 nm dan diameter partikel sebesar 28,52 nm.

Pyrolysis is used to convert the carbon source of polypropylene PP in solid form to be synthetic feedstocks in gaseous hydrocarbon form. Variations of the pyrolysis temperature and time are carried out to obtain the correlation between those variables and amount of pyrolysis gases, the yield, and quality of produced CNT. PP is pyrolized at temperature range of 525-600°C to produce pyrolizate gases which will be characterized with GC FID. Flame synthesis is used to convert PP plastic waste into CNT alongside with the use of wired mesh stainless steel type SS 316 as the substrate.
The substrate is pre treated by oxidative heat treatment at 800°C for 10 minutes. Pyrolizate gases are mixed with oxygen flowed from a venturi to enable combustion reaction. The pretreated substrates are placed inside the synthesis reactor. The combustion gas is flowed to the synthesis reactor to produce CNT at 800°C. Produced CNT is characterized using XRD, TEM, and SEM. The highest yield is obtained at the pyrolysis temperature of 525°C for 45 minutes. The optimal quality is obtained at the pyrolysis temperature of 525°C for 30 minutes that has 23.81 nm of average crystalline size and 28.52 nm of particle size of CNT.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67015
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulfikar Rachman Aji
"Uji banding dilakukan untuk mengetahui kelayakan alat laboratorium dengan alat laboratorium lain yang telah terakreditasi. Pada penelitian ini, uji banding dilakukan menggunakan sampel film plastik BOPP (Biaxial Oriented Polypropylene) untuk membuktikan mesin uji tarik LFPlus yang dimiliki oleh Departemen Teknik Metalurgi dan Material FTUI (DMM FTUI) layak digunakan. Uji banding ini menggunakan standard ASTM D 882. Hasil uji banding laboratorium DMM FTUI dengan laboratorium PERTAMINA memperlihatkan selisih persentase < 2 %.
Setelah uji banding, uji tarik dengan variasi kecepatan tarik 100; 300; 500; 700 dan 900 mm/min dan lebar sampel 10; 17,5; dan 25 mm diuji tarik masing-masing sebanyak 9 sampel untuk mendapatkan kondisi terbaik dari mesin LFPlus. Dari pengujian tersebut, lebar sampel 17,5 mm merupakan kondisi pengujian yang optimum dan mempunyai sifat reproducibility yang baik karena memperlihatkan hasil kuat tarik yang cenderung stabil pada variasi kecepatan. Secara keseluruhan kecepatan tarik 500 mm/min dapat digunakan pada berbagai variasi lebar, hal ini sesuai dengan ASTM D 882. Namun untuk meningkatkan produktifitas, lebar sampel 17,5 mm dengan kecepatan tarik 700 mm/min dapat menjadi alternatif. Fenomena luluh yang terjadi pada sampel film plastik BOPP dapat terbaca dengan program Nexygen pada kecepatan tarik rendah atau 100 mm/min, dan fenomena penurunan beban setelah luluh (post-yield stress drop) terlihat jelas pada
kecepatan tarik tinggi atau 900 mm/min.
Penelitian ini diharapkan menjadi acuan mesin uji LFPlus milik Departemen Teknik Metalurgi dan Material FTUI sehingga dapat digunakan untuk meningkatkan kualitas pendidikan.

Cross-check testing is done to know the feasibility of the laboratory?s instrument with the other instrument which has been accredited. The cross-check testing use BOPP plastic film to know the feasibility of tensile machine tester LFPlus belonging to Departement of Metallurgy and Materials FTUI. This testing is based on ASTM D 882. The difference of cross-check testing of DMM FTUI?s laboratory and PERTAMINA?s laboratory are less than 2 %.
The tensile test with tensile speed 100; 300; 500; 700 and 900 mm/min and width of sample 10; 17,5; and 25 mm variation was done to 9 sample respectively, after the cross-check testing to get the good condition of the LFPlus machine?s tensile tester of plastic film. This test uses sampling method according to the condition of the instrument and ASTM D 882 standard. The result of the test, width of 17,5 mm is the optimum testing condition and has a good reproducibility because the tensile strength was stable in speed variations. Generally, the tensile speed of 500 mm/min can be used in many witdh variations, the result was appropriated to ASTM D 882. But to increase productivity, the sampel width of 17,5 mm and tensile speed 700 mm/min can be the alternative. The yield phenomenon can only read by Nexygen program if it has lower tensile speed or tensile speed of 100 mm/min and post-yield stress drop phenomenon could be seen more clearly at high tensile speed or tensile speed of 900 mm/min.
Hopely this research could be the reference, so it will develop the quality of education at Departement of Metallurgy and Materials FTUI."
2008
S41784
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>