Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143381 dokumen yang sesuai dengan query
cover
Ahmad Marzuki
"Penggunaan energi listrik saat ini secara garis besar masih menggunakan tegangan arus bolak-balik AC . Hampir semua peralatan elektronik memerlukan sumber arus searah DC terutama pada komputer pribadi Personal Computer . Dalam aplikasinya, sumber tegangan AC perlu dikonversikan menjadi tegangan DC pada sistem catu daya komputer. Sistem pada catu daya komputer memiliki tegangan keluaran yang bervariasi yaitu 3,3v, 5v, 12v, 0, -5v, dan -12v. Berdasarkan hasil pengukuran, besarnya tegangan keluaran pada catu daya komputer berkisar dibawah 5 yang berarti bahwa tegangan tersebut masih dalam kondisi toleransi yang diperbolehkan dan arus yang paling besar terdapat pada pengukuran kabel soket untuk VGA yang memiliki nilai arus DC mencapai 1,550 A pada saat beroperasi, 1,533 pada saat penyalaan komputer dan 422mA pada saat kondisi stand by pada tegangan 12,10 volt DC. Dibutuhkan Konverter DC-DC untuk mengubah level tegangan DC satu ke level tegangan DC lainnya. Adapun jenis konverter DC-DC yang dapat digunakan pada catu daya komputer pribadi yaitu konverter DC-DC topologi Boost Single Input Multiple Output. Simulasi Perancangan Konverter DC-DC menggunakan software ISS Proteus.

The use of electricity nowadays is largely remains using a source of alternating current AC. Almost all electronic devices require a source of direct current DC, especially on personal computers. In its application, the AC voltage source need to be converted into DC voltage in the power supply system of the computer. Systems on the computer power supply has variable output voltage is 3.3V, 5V, 12V, 0, 5V, and 12V. Based on the measurement results, the magnitude of the output voltage of the power supply computer ranges below 5 , which means that the voltage is still in a state of tolerance allowed and the current most contained in the measurement cable connector to VGA that has a value of DC current reached 1,550 A during operation , 1,533 at the time at which the computer and 422mA during the stand by condition at a voltage of 12.10 volts DC. DC DC converters needed to convert one DC voltage level to another DC voltage level. The type of DC DC converters that can be used on a personal computer power supply is a DC DC converter topology Boost Single Input Multiple Output. Simulation of DC DC converter design using Proteus ISS software."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48146
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Sugandi
"DC-DC Switch Mode Power Supply SMPS merupakan rangkaian elektronika yang dapat mengubah suatu level tegangan listrik tertentu menjadi level tegangan listrik lainnya. Perubahan level tegangan memanfaatkan prinsip induksi elektromagnet, yaitu melalui kopel magnetik dari transformator frekuensi tinggi berinti ferit. Frekuensi tinggi di bangkitkan menggunakan mikrokontroler ATmega 328 berbasis Arduino. Frekuensi tinggi yang dihasilkan adalah sekitar 20kHz. Kelebihan SMPS dalam konversi tegangan dibandingkan konverter lainnya adalah SMPS dapat mengkonversi dengan efisiensi yang cukup tinggi, karena rasio tegangan dipertahankan oleh rasio lilitan. Selain itu SMPS juga dapat memisahkan rangkaian secara elektrik. Sehingga jika ada gangguan di sisi primer, sisi sekunder tidak merasakan gangguan secara langsung, begitu pula sebaliknya. Terdapat filter LC dua tahap untuk menghaluskan gelombang keluaran. Terdapat pula pengendali PID untuk mempertahankan tegangan keluaran sesuai dengan referensi. Terdapat pula rangkaian snubber untuk melindungi divais elektronik dari interaksi induktansi leakage transformator dengan kapasitansi Miller divais elektronik tersebut. Nilai ripple factor gelombang keluaran sebelum difilter adalah 1.11, setelah difilter satu tahap adalah 0.556, dan difilter dua tahap 0.222. Pada beberapa pengujian respon transien, didapatlah waktu tunak rata-rata sebesar 1.79 detik. Undershoot dan Overshoot tegangan keluaran terbesar yang terjadi saat pengujian adalah pada nilai tegangan 163.86V dan 268.93V dari set point 220V. Terjadi penurunan suhu MOSFET rata-rata sebesar 7.36oC ketika rangkaian snubber dipasang. Pada pengujian efisiensi, didapat efisiensi tertinggi sebesar 91.7 pada beban 700W.

DC DC Switch Mode Power Supply SMPS is an electronics circuit that used to change DC voltage level from one level to another level. This circuit use electromagnetic induction, which is via magnetic couple of high frequency ferrite transformer to change voltage level. High frequency is produced by ATmega 328 microcontroller with Arduino platform. Frequency that used in this circuit is about 20 kHz. SMPS advantages compare to another voltage converter are high efficiency conversion and it can electrically isolate primary and secondary. So, if there is a fault at primary side, then secondary side is not sense the fault directly, and vice versa. There is a two stage LC filter to make output wave smoother. There is a PID controller to maintain output voltage at its reference. There is a snubber circuit to protect electronic device from interaction between transformer leakage inductance and its Miller capacitance. Output waveform ripple factor before being filtered is 1.111, after being filtered by 1 stage LC filter is 0.556, and after being filtered by 2 stage LC filter is 0.222. From some transient test, average system rsquo s settling time is 1.79 second. Output voltage undershoot and overshoot are respectively 163.86V and 268.93V at 220V set point voltage. MOSFETs temperature has decreased after snubber circuit is placed. From efficiency test, highest systems efficiency is 91.7 at 700 watt load."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ismail
"Pada saat ini pengembangan dan penggunaan kendaraan listrik masif dilakukan. Kendaraan listrik membutuhkan konverter DC-DC untuk menurunkan tegangan tinggi dari sumber utama — baterai besar — ke tegangan rendah (step down DC-DC converter) sehingga tegangan dapat digunakan oleh komponen - komponen yang membutuhkan tenganan rendah. Topologi konverter DC-DC yang umum digunakan adalah konverter dengan switch tunggal seperti flyback converter dan switch ganda seperti half bridge converter. Akan tetapi kedua topologi tersebut memiliki nilai voltage and current stress (spike, overshoot, dan ringing) yang tinggi dengan demikian akan menimbulkan rugi - rugi daya yang besar serta membutuhkan komponen dengan rating tegangan dan arus yang tinggi. Phase Shift Full Bridge DC-DC Converter (selanjutnya akan disebut PSFB) merupakan salah satu topologi konverter DC-DC terisolasi yang memiliki konfigurasi empat switch (full bridge / active bridge) sehingga dapat memiliki voltage and current stress yang lebih rendah dibandingkan dengan kedua topologi sebelumnya, dengan demikian dapat dihasilkan rugi - rugi daya yang lebih rendah [1]. Tegangan output PSFB ditentukan dari pergeseran fasa active bridge yang dihasilkan melalui kolaborasi keempat switch MOSFET oleh gate driver [2]. Gate driver dikendalikan oleh mikrokontroler yang sudah diporgram dengan algoritma pergeseran fasa dan juga closed loop control. Dalam karya ilmiah ini berhasil dibuat purwarupa PSFB yang dapat menghasilkan tegangan output dinamis sesuai dengan pergeseran fasa dalam active bridge. Nilai tegangan output memiliki kecenderungan meningkat dalam rentang pergeseran fasa 0º sampai 180º dan memiliki kecenderungan menurun dalam rentang pergeseran fasa 180º sampai 360º. Diperoleh juga hasil yang menunjukkan bahwa purwarupa PSFB sudah terintegrasi dengan closed loop control sehingga sistem dapat menghasilkan tegangan output sesuai dengan setpoint yang ada dalam program. Sistem dapat mempertahankan tegangan output sesuai setpoint meskipun diberikan variasi tegangan input dan variasi beban.

Currently, the development and widespread use of electric vehicles are underway. Electric vehicles require a DC-DC converter to convert the high voltage from the main source — a large battery — to a lower voltage (step-down DC-DC converter), allowing it to be used by components that require low voltage. Commonly used topologies for DC-DC converters include single-switch converters like the flyback converter and dual-switch converters like the half-bridge converter. However, both topologies have high voltage and current stress values (spikes, overshoot, and ringing), resulting in significant power losses and the need for components with high voltage and current ratings. The Phase Shift Full Bridge DC-DC Converter (hereafter referred to as PSFB) is one of the isolated DC-DC converter topologies with a four-switch configuration (full bridge/active bridge). This configuration allows it to have lower voltage and current stress compared to the previous two topologies, thereby resulting in lower power losses [1]. The output voltage of the PSFB is determined by the phase shift of the active bridge generated through the collaboration of the four MOSFET switches controlled by a gate driver [2]. The gate driver is controlled by a microcontroller programmed with a phase shift algorithm and closed-loop control. In this scientific work, a prototype of the PSFB has been successfully developed, capable of producing dynamic output voltage in accordance with the phase shift in the active bridge. The output voltage tends to increase in the phase shift range of 0º to 180º and decrease in the range of 180º to 360º. Furthermore, results indicate that the PSFB system has been integrated with closed-loop control, enabling it to generate output voltage according to the various setpoint in the program. The system is able to maintain the output voltage according to setpoint, regardless of various of input voltages and loads."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agung Budi Santoso
"Peralatan-peralatan listrik sekarang ini seperti lampu, telah menerapkan teknologi Switched Mode Power Supply (SMPS) pada rangkaian catu dayanya dalam mengkonversi tegangan AC menjadi tegangan DC. Proses konversi pada beban elektronika ini menimbulkan adanya rugi-rugi konversi. Sehingga muncul peluang DC microgrid untuk meminimalisir rugi-rugi daya yang dimanfaatkan untuk mensuplai beban - beban AC tersebut.
Seiring dengan berjalannya waktu, DC microgrid mulai di ujicoba untuk diparalel dengan DC microgrid lainnya, agar dapat ikut membantu membagi beban-beban penggunaan oleh konsumen, dan menjaga agar ketersediaan listrik tetap terjaga apabila terjadi gangguan pada salah satu DC microgrid.
Ketika dilakukan paralel DC-DC konverter dengan seluruh komponen dan peralatan yang identik didapatkan yaitu terjadi ketidakseimbangan dalam pembagian arus antar konverter terhadap beban yang digunakan. Ketidakseimbangan arus ini terjadi karena faktor toleransi komponen dalam konverter yang tidak mungkin sama. Faktor lain yang pada akhirnya menyebabkan perbedaan arus adalah faktor penggunaan kabel atau konduktor listik dimana karakteristik kabel yang tidak identik dari konverter ke beban akhir.
Kemudian muncul penggunaan komponen pasif sebagai penyeimbang arus berupa induktor toroid, sehingga menjadikan selisih keseimbangan arus antar konverter menjadi lebih baik dan efisien.

Current electrical equipment such as lights, have implemented technology Switched Mode Power Supply (SMPS) on the power supply circuit converts the AC voltage into DC voltage. The conversion process in this electronic load losses gave rise to conversion. So there is an opportunity DC microgrid to minimize power losses are used to supply the AC load.
Over the time, the DC microgrid started in trials for paraller DC microgrid with others, in order to help to divide the load by consumers used, and to keep the availability of electricity is maintained in the event of interference on one DC microgrid.
When done parallel DC-DC Converter with all components and equipment that are identical obtained is an imbalance in current sharing between the konverter to the load being used. This occurs because the current imbalance tolerance factor components in konverter that not be the same. Another factor that ultimately led to the current difference is a factor of the use of wires or conductor electric cable in which the characteristics are not identical from the konverter to the load end.
Then came the use of passive components such as balancing current toroid inductors, making the difference between the current balance konverter becomes better and more efficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58954
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suharsono Halim
"DC-DC boost converter merupakan rangkaian elektronika yang dapat menaikkan (step-up) tegangan DC. Pada proses pengaturan kestabilan tegangan keluaran hasil konversi pada DC-DC boost converter digunakan rangkaian penunjang berupa voltage sensor. Akan tetapi terjadi permasalahan pada bagian voltage sensor yang terganggu karena adanya noise yang disebabkan oleh interferensi switching berfrekuensi tinggi.
Pada skripsi ini akan dirancang dan dibangun rangkaian DC-DC boost converter untuk menaikkan tegangan masukan 48V menjadi tegangan keluaran 200V dengan penambahan rangkaian sensing second orde low pass filter sebagai atenuator noise. Hasil perancangan rangkaian sensing second orde low pass filter dengan perangkat lunak ISIS Proteus menunjukkan respon frekuensi cut off pada 10kHz dengan tipe optimalisasi butterworth low pass filter, sedangkan pada pengujian terjadi pergeseran pada frekuensi cut off menjadi 15kHz.
Hasil perbandingan antara sinyal "A" sebelum dengan sinyal "B" setelah mengalami filter didapatkan sinyal yang lebih baik pada sinyal "B" setelah filter dengan noise yang telah mengalami peredaman.

DC-DC boost converter is an electronics circuit that is used to step-up DC voltage. In the process of regulating the output voltage of DC-DC boost converter, supporting circuit such as a voltage sensor is required to control the stability of the output voltage conversion. However, a problem arises on the voltage sensor component caused by an interference signal generated from a high frequency switching.
In this thesis, we design and develop a DC-DC boost converter to step-up a DC input voltage level of 48V into a DC output voltage level of 200V using a second order sensing active low pass filter as a noise attenuator. The simulation result of the sensing second order low pass filter using the software ISIS Proteus produce a cut off frequency at 10kHz using butterworth low pass filter optimalization, while the actual measurement produce a cut off frequency at 15kHz.
The comparison between sensing "A" signal before and "B" signal after filtering establish a better performance for the "B" signal after filtering with attenuated noise signal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64191
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Wira Pratama
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 600V. DC-DC konverter terisolasi merupakan solusi untuk mengubah tingkat tegangan dari 600V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi phase shift full bridge current doubler with synchronous rectification agar dapat memperoleh daya sebesar 3kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 100 kHz dengan menggunakan semikonduktor MOSFet. MOSFet harus mencapai kondisi zero voltage swithching yaitu pada saat MOSFet akan menyala, tegangan MOSFet sudah menyentuh angka nol, sehingga tidak terjadi rugi-rugi swithing saat menyala. Kondisi ZVS harus tercapai pada sisi primer maupun sisi sekunder. Tercapainya ZVS akan membuat efisiensi konverter menjadi lebih tinggi sehingga mencapai spesifikasi yang diinginkan. Pada sisi sekunder terdapat rangkaian snubber yang bertujuan untuk mengurangi ringing pada tegangan sekunder, dua induktor dan satu kapasitor yang berfungsi sebagai filter.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 600V battery source. Isolated DC-DC converter is a solution to convert voltage level from 600V to 24V with Switch Mode Power Supply (SMPS) method that designed with phase shift full bridge current doubler synchronous rectification to produce 3 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 100 kHz using MOSFet semiconductor. MOSFet must reach zero swithching voltage condition that is when the MOSFet is turn on, the MOSFet voltage has reached zero, so there is no need to calculate swithing losses when it is on. ZVS condition must be agreed on the primary and secondary side. Reached ZVS will make the converter efficiency higher so that it reaches the desired specifications. On the secondary side there is a snubber circuit that is intended to reduce the ringing voltage at the secondary switching, two inductors and one capacitor that functions as a filter."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Albertus Hendra
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 400V. Isolated DC-DC converter merupakan solusi untuk mengubah tingkat tegangan dari 400V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi push-pull agar dapat memperoleh daya sebesar 1kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 20 kHz dengan menggunakan semikonduktor IGBT. Pada bagian masukkan terdapat rangkaian snubber agar diperoleh masukkan tegangan yang mendekati ideal. Pada bagian keluaran rangkaian terdapat filter LC yang berfungsi untuk menjaga gelombang tegangan keluaran agar lebih stabil pada suatu nilai. Tegangan keluaran diumpan balik ke pengendali PID yang dirancang dengan metode tempat kedudukan akar berdasarkan pemodelan state-space averaging dan digunakan untuk mengatur keluaran PWM yang menjalankan proses switching pada IGBT, sehingga menjaga keluaran tetap pada nilai tegangan yang diinginkan, yaitu 24V. Seluruh rancang bangun dianalisa melalui hasil grafik simulasi. Hasil penelitian ini diperoleh rangkaian isolated DC-DC converter efisiensi 83.6% dan mampu memberikan keluaran stabil pada 24V dengan daya 1kW.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 400V battery source. Isolated DC-DC converter is a solution to convert voltage level from 400V to 24V with Switch Mode Power Supply (SMPS) method that designed with push-pull topology that the design able to drive 1 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 20 kHz using IGBT semiconductor. Ferrite transformer is used in this simulation to satisfy the required switching frequency of 20 kHz. On the input circuit, there is a snubber circuit to maintain the input voltage to be more ideal. On the output circuit, LC filter is used to maintain the voltage output wave to be more stable on the desired voltage level. The output voltage provides feedback value to PID controller that is designed using Root Locus method based on state-space averaging model and used by the PID controller to control the PWM output to drive the switching process on IGBT semiconductor, hence the output voltage will be maintained on desired level, 24V. The whole design is analyzed through simulation graph result. The result of this study, an isolated DC-DC converter that has efficiency 83.6% and capable of delivering 24V stable output with 1kW power transmission."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Irfan Alfath
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasang di dalam sepeda motor listrik yang dapat menghemat ruang dan kompatibel untuk rumah sistem DC. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Dual Active Bridge (DAB) dalam frekuensi switching tinggi sebesar 1 MHz dan menggunakan magnetis planar ini dilakukan untuk mendesain dan menentukan sistem kontrol dari DC-DC konverter yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke tegangan output 55 V di 550 W. Hasil dari penelitian ini menunjukkan semua metode phase shift modulation (PSM) berhasil didesain untuk mencapai ZVS. Single Phase Shift merupakan PSM yang terbaik untuk penerapan kasus ini karena memiliki Irms yang paling rendah. Penelitian ini berhasil membuktikan bahwa DAB dapat beroperasional secara dua arah. Desain dibuat hingga tahap pembuatan footprint dengan komponen magnetis menggunakan 84,7% dari total ukuran komponen.

Following the global trend of adopting renewable energy into electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Dual Active Bridge (DAB) topology in a high switching frequency of 1 MHz and using a magnetic planar is performed to design and determine the control system of the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage of 55 V at 550 W. The result of this research is the Phase shift modulation (PSM) was successfully designed to achieve ZVS. Single Phase Shift is the best PSM for the application of this case because it has the lowest Irms. This research proved that DAB can operate bidirectional. The design is made to the stage of footprint design with the magnetics component use 84,7% of total size of the components."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyaz Caesar Muhammad
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasangn di dalam pada sepeda listrik yang tidak mengambil ruang yang berlebihan dan kompatibel untuk sistem DC rumah. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Half bridge resonant LLC dalam frekuensi switching tinggi di atas 1MHz menggunakan magnetis planar dilakukan untuk memilih Konverter DC-DC yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke kisaran tegangan output 48-55 V di 0,5 kW

Following the global trend of adopting renewable energy into the electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Half-bridge resonant LLC in high switching frequencies above 1MHz using planar was performed to select the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage range 48-55 V at 0.5  KW"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Dias Sutarto
"Pembuatan sebuah pengisi daya listrik sudah dilakukan pada berbagai macam manca negara dikareakan adanya perubahan energy yang sudah mulai dilakukan untuk menghindari tersebarnya polusi udara maupun kimiawi. Pada penelitian ini, penulis merancang dan membangun sistem pemantau dan pengisi daya baterai menggunakan metode DC-DC converter untuk digunakan pada kendaraan listrik. Penelitian ini bertujuan agar kendaraan listrik dapat melakukan pengisian daya dimana saja di tempat yang terdapat sumber PLN (220 VAC). Dengan demikian, kendaraan listrik tidak harus melakukan pengisian daya pada sebuah charging station khusus saat keadaan darurat. Pada eksperimen kali ini, penulis telah berhasil merancang sebuah pengisi daya yang dapat mengubah tegangan 50V DC   dan menurunkannya menjadi tegangan 36 V yang akan mengalirkan arus hingga 8 A dengan Aki sebanyak tiga buah bertegangan 36V 60Ah sebagai bebannya dimana tegangan ippleyang dihasilkan lebih kecil diaman efisiensi pengisian daya akan lebih baik. Rangkaian yang diusulkan ini terdiri dari sebuah full wave rectifier circuit, filter kapasitor, dan buck converter. Dengan demikian, tegangan charging dapat lebih sesuai dengan tegangan baterai yang akan dipakai, yakni sebesar 36 Volt.
Making an electric charger has been carried out in various foreign countries because of the energy changes that have been made to avoid the spread of air and chemical pollution. In this study, the author designed and built a battery monitoring and charger system using the DC-DC converter method for use in electric vehicles. The purpose of this research is that electric vehicles can charge anywhere in the place where there is a source of PLN (220 VAC). Thus, electric vehicles do not have to charge a special charging station during an emergency. In this experiment, the author has succeeded in designing a charger that can convert 50V DC voltage and lower it to 36V voltage which will flow up to 8 A with a battery of three 36V 60Ah voltage as the load where the ripple voltage produced is smaller in efficiency charging will be better. The proposed circuit consists of a full wave rectifier circuit, filter capacitor, and buck converter. Thus, the charging voltage can be more in accordance with the voltage of the battery to be used, which is equal to 36 Volts."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>