Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9285 dokumen yang sesuai dengan query
cover
Burk, Adrienne L. (Lee), 1954-
"In the late 1990s, Vancouver's Downtown Eastside became the setting for three monuments - Crab Park Boulder, Marker of Change and Standing with Courage, Strength and Pride. The monuments were grassroots initiatives that challenged the norms of civic art by claiming a place in public space for society's most vulnerable groups, and each figured in debates about many kinds of violence. Emphasizing the resilience and agency of artists, activists and residents, this vivid account of the creation of memory-scapes offers unique insights into the links between power, public space and social memory. Adrienne L. Burk is a senior lecturer in the Department of Sociology and Anthropology at Simon Fraser University --"
Vancouver: UBC Press, 2010
971.1 BUR s
Buku Teks SO  Universitas Indonesia Library
cover
Takeshi, Nakagawa
Tokyo: International House of Japan, 2005
363.5 TAK nt
Buku Teks  Universitas Indonesia Library
cover
Bakieva, Gulnara A.
Washington, DC: Council for Research in Values and Philosophy, 2007
153.12 BAK s
Buku Teks SO  Universitas Indonesia Library
cover
Sulthan Ali Pasha
"Saham merupakan salah satu surat berharga yang diterbitkan dan dijual oleh perusahaan,
yang telah memenuhi syarat, di Bursa Efek Indonesia. Prinsip dasar yang dimiliki oleh
saham adalah High Risk High Reward, yang menggambarkan bahwa saham memang
dapat memiliki hasil yang besar, namun memiliki risiko yang tinggi pula. Dengan
prinsip High Risk High Reward, tentunya para investor harus lebih hati-hati dalam
menentukan langkah yang akan mereka lakukan. Salah satu cara yang dapat digunakan
untuk mengurangi risiko, yaitu melakukan prediksi tren harga saham menggunakan
Machine Learning. Menggunakan data historis saham pada Bursa Efek Indonesia,
yaitu open, high, low, dan close price, algoritma Machine Learning dapat melakukan
prediksi tren harga saham yang selanjutnya akan digunakan sebagai strategi investasi
para investor. Terdapat banyak metode Machine Learning yang dapat digunakan untuk
melakukan prediksi, salah satu metode yang dapat digunakan adalah Recurrent Neural
Network yaitu Long Short Term Memory (LSTM). Pada metode LSTM, data historis
harga saham akan dibawa ke depan melalui seluruh gerbang LSTM yaitu: Forget
Gate, Input Gate, dan Output Gate. Selanjutnya akan dicari nilai loss dari model,
setelah didapat nilai loss, model akan ditinjau kembali setiap tahapannya, dimulai dari
belakang. Langkah pengulangan tesebut dilakukan agar mendapat variabel Weight dan
Bias yang optimal. Kemudian, tingkat akurasi dari metode tersebut akan ditentukan
menggunakan: Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE).
Penelitian ini menggunakan data historis perusahaan yang termasuk pada Indeks LQ45
dan dapat diambil melalui website, finance.yahoo.com. Dari penelitian ini, diketahui
bahwa, masing-masing masalah memiliki model terbaiknya, untuk penyelesaian masalah
tersebut.

Stock is a part of ownership of a company, that have fulfill the requirement to be sold at
Bursa Efek Indonesia. The basic principal of stock market is High Risk High Reward,
which describe that stock market indeed have a chance to get a great profit, but it also
come with a high risk. This principal is the reason that all investor must be cautious in
deciding their move. There’s many method to do this, with one of the being, forecasting
the stock market trend with machine learning. With the historical data, that include
open, high, low, dan close price, the machine learning algorithm, could forecast the stock
market direction for the next days, which will be one of the deciding factor for investor to
choose their move. Nowadays, there’s many machine learning method that can be used to
forecast, one of them is the branch method of Recurrent Neural Network, which is, Long
Short Term Memory (LSTM). LSTM use the historical data, and bring them forward to,
Forget Gate, Input Gate, Memory State, Output Gate. Then the loss value of the model
will be calculated. After all the process the model will be re-evaluated. The re-evaluation
step is to update all the weights and biases in the model. Then the accuracy of the model
will be evaluated with Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). This study uses the historical data of the companys that’s included in the index
LQ45, and the data is taken from the website, finance.yahoo.com. From this research, it
is known that every problem has their own preference model to solve.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ian Lord Perdana
"Meningkatnya jumlah investor dari tahun ke tahun di pasar modal berbagai negara mengakibatkan proses pengambilan keputusan dalam membeli saham menjadi salah satu hal yang penting. Tahapan ini merupakan tahapan yang penting karena akan memengaruhi tingkat kekayaan atau pendapatan yang akan diterima oleh seorang investor. Dalam membantu proses pemilihan saham tersebut, seorang investor dapat menggunakan analisa teknikal atau analisa fundamental dalam prosesnya. Namun seiring dengan perkembangan teknologi dan juga kemudahan dalam mengakses data harga indeks saham, maka proses prediksi selanjutnya dapat dilakukan dengan menggunakan analisis big data dalam prosesnya. Penelitian ini akan dilakukan proses prediksi indeks harga saham dengan menggunakan ARIMA dan juga algoritma Long Short-Term Memory untuk pengolahan datanya dan metode web scraping untuk metode pengumpulan data harga indeks saham. Hasil dari penelitian menunjukkan nilai MAPE 1.243% untuk indeks JKSE, 1.005% untuk indeks KLSE, 1.923% untuk indeks PSEI, 1.523% untuk indeks SET.BK dan 3.7944% untuk indeks STI.

The increasing number of investors from year to year in the capital markets of various countries has made the decision-making process in buying shares become one of the essential things. This stage is crucial because it will affect the level of wealth or income that an investor will receive. In helping the stock selection process, an investor can use technical analysis or fundamental analysis. However, along with technological developments and the ease of accessing stock index price data, the next prediction process can be carried out using big data analysis. This research will carry out the stock price index prediction process using ARIMA and the Long Short-Term Memory algorithm for data processing and web scraping methods for stock index price data collection methods. The study results showed that the MAPE value was 1.243% for the JKSE index, 1.005% for the KLSE index, 1.923% for the PSEI index, 1.523% for the SET.BK index and 3.7944% for the STI index."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Takeshi, Nakagawa
Tokyo : The International House of Japan, 2005
R 720.95 TAK nt
Buku Referensi  Universitas Indonesia Library
cover
Rizka Fadilah
"ABSTRAK
Memori dan sejarah kerap dikaitkan satu sama lain karena berkaitan erat dengan waktu, padahal keduanya adalah hal yang berbeda. Sebuah kota yang berdiri sejak dahulu, mengalami berbagai kejadian pada setiap waktunya sehingga memiliki memori dan sejarahnya sendiri yang membuat kota tersebut berbeda dari yang lainnya. Dalam hal ini keduanya berperan dalam membangun ruang urban dalam sebuah kota. Tetapi dalam perwujudannya, seringkali hanya menjadi representasi tanpa ingatan dari masyarakat pada kota tersebut, bahkan seringkali hanya menjadi ldquo;pemanis rdquo; bagian komersial, atau memori kolektif dari sebuah kota sudah tergantikan oleh memori personal dari masyarakat. Namun apakah penggunaan memori di dalam ruang urban masih relevan?Dalam skripsi ini saya mempertanyakan kembali apakah penggunaan memori dalam kota masih relevan atau tidak. Kebanyakan masyarakat Jakarta dengan rentang usia 17-26 tahun tidak mengetahui sejarah dan tujuan pembangunan Bundaran HI, terdapat dua kemungkinan dalam pelupaan yang terjadi di dalamnya, apakah karena rentang waktu yang memang terlalu jauh tetapi juga dapat disebabkan rancangan kota yang ada di dalamnya tidak mendukung proses pengingatan terjadi. Dalam skripsi ini saya mencoba melihat Bundaran HI melalui teori Rossi, Boyer, dan Borden, bagaimana keterkaitan antara lokasi yang dipilih dengan makna yang ada di baliknya, keterkaitan antara jalan dengan lokasi-lokasi lainnya, dan juga perkembangan dari monumen itu sendiri, apakah mendukung proses pengingatan tersebut atau tidak sama sekali.

ABSTRACT
Memory and history are often linked to each other because they are related to time eventhough they are slightly different. Since the time it was built, a city has been experiencing various of events so it has its own memory and history that makes the uniqueness of the city. Both history and memory have their roles to build urban space in the city. But in its constructing process, the city often just a mere representation without the memory of the society, and often used for an ldquo additional sweetener rdquo of the commercial part, or replaced the collective memory the city has had to personal memory of individual in society. But is using memory in urban space still relevant In this thesis, I seek for the use of memory in the city, whether if it rsquo s still relevant or not relevant. Most of Jakarta youngsters aged 17 26 years do not know the history and the meaning behind the construction of Bundaran HI, and there are two possibilities why are they forgetting the history whether they are not yet existed when it happened, or because the design itself doesn rsquo t support people to remember its history. Therefore, I try to see the design of Bundaran HI through the theory of Rossi, Boyer, and Borden how the location linked to its meaning, to the link between the street and other locations, and to the monument itself, whether the design supports the remembering process, or the design gives no chance to be remembered."
2017
S67692
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boothroyd, Basil, 1910-
London: Allen & Unwin, 1975
808.51 BOO a
Buku Teks SO  Universitas Indonesia Library
cover
Abdullah Hasan
"Penyakit Demam Berdarah Dengue (DBD) merupakan salah satu penyakit yang penyebarannya sangat cepat. Dengan memprediksi angka insiden penyakit tersebut, diharapkan dapat membantu pemerintah dalam mengatasi penyakit ini. Seiring berkembangnya ilmu pengetahuan, salah satu metode untuk memprediksi penyakit DBD adalah machine learning. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam machine learning yaitu Long Short-Term Memory (LSTM) dalam membangun model prediksi insiden DBD. Pada penelitian sebelumnya, LSTM telah digunakan dalam memprediksi angka insiden DBD di 20 kota di negara China. Pada skripsi ini model LSTM diterapkan untuk memprediksi angka insiden DBD di DKI Jakarta dengan menggunakan data cuaca dan insiden DBD. Hasil implementasi LSTM dalam memprediksi angka insiden DBD menunjukkan bahwa model terbaik diperoleh dengan menggunakan proporsi data training-testing 90%-10% dengan RMSE dan MAE berdasarkan data test. Nilai RMSE pada wilayah Jakarta Pusat, Jakarta Timur, Jakarta Barat, Jakarta Utara, dan Jakarta Selatan adalah 5,218412, 9,570137, 10,527401, 6,496117, dan 5,952310. Nilai MAE pada wilayah yang sama secara berturut-turut adalah 4,016646, 7,791134, 8,405053, 5,279802, dan 4,416999.

Dengue Hemorrhagic Fever (DHF) is a disease that spreads very fast. By predicting the incidence of the disease, it is expected to help the government in overcoming this disease. As the development of science, one method to predict DHF is machine learning. The study was conducted by utilizing one method in machine learning that is Long Short Term-Memory (LSTM) in building a DHF incident prediction model. In previous studies, LSTM has been used in predicting the incidence of DHF in 20 cities in China. In this thesis the LSTM model is applied to predict the number of DHF incidents in DKI Jakarta by using weather data and DHF incidents. The results of LSTM implementation in predicting the number of DHF incidents showed that the best model was obtained using the proportion of training data-testing 90% -10% with RMSE and MAE based on test data. The RMSE values in the Central Jakarta, East Jakarta, West Jakarta, North Jakarta and South Jakarta areas are 5.218412, 9.570137, 10.527401, 6.496117, and 5.952310. MAE values in the same region are 4,016646, 7.791134, 8.405053, 5.279802, and 4.416999."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rafi Zhafran Wisnuwardana
"Jakarta merupakan ibukota Indonesia yang berfungsi sebagai pusat pemerintahan dan ekonomi, dimana urbanisasi menjadi masalah di Jakarta yang memiliki laju pertumbuhan penduduk yang mencapai 0,86% menurut Badan Pusat Statistik. Dengan pertumbuhan penduduk yang masih terus bertambah, pengelolaan sumber air menjadi aspek yang krusial dalam tata kota dan urban planning. Salah satu aspek utama dalam pengelolaan tersebut adalah mengelola hubungan curah hujan-limpasan permukaan pada daerah tersebut. Salah satu cara dalam pengelolaan tersebut adalah melalui metode pemodelan dimana metode ini dapat memberikan analisis secara mendalam serta kemampuannya dalam memprediksi yang berguna untuk pengelolaan sumber air. Terdapat berbagai cara dalam memodelkan hubungan curah hujan-limpasan permukaan dimana salah satunya adalah pemodelan berbasis data. Salah satu metode pemodelan tersebut adalah melalui deep learning dimana pada penelitian ini penulis mengunakan metode Long Short-term Memory (LSTM). Penelitian ini akan menggunakan LSTM sebagai alat untuk memodelkan data curah hujan dari tiga stasiun pengukuran dan data debit sungai dari tiga stasiun pengukuran dengan rentang waktu sepanjang 12 tahun (2009-2020). Hasil dari prediksi menunjukkan bahwa model LSTM memiliki performa yang buruk dalam dataset curah hujan dimana nilai R² tertinggi yang mencapai 0.09 dengan nilai MAE dan RMSE yang masing-masing berada pada 9,7 mm dan 18,14 mm. Performa pada dataset limpasan permukaan menunjukkan bahwa LSTM memiliki performa yang cukup baik dimana masing-masing rata-rata nilai R², MAE dan RMSE tertinggi berada pada 0,58, 4,15 m³/s dan 8 m³/s. Berdasarkan dari hasil evaluasi tersebut, penulis menyimpulkan bahwa meskipun dengan nilai akurasi yang rendah, model LSTM masih memiliki potensi untuk dikembangkan secara lebih lanjut apabila melihat nilai MAE dan RMSE yang berada pada kisaran yang cenderung lumayan sehingga LSTM dapat dikembangkan dengan penambahan data masukan.

Jakarta is a capital city which functioned as both a governmental and economic centre in Indonesia, which makes urbanization a problem in Jakarta, on which Jakarta itself has a population growth rate of 0.86% according to Statistic Indonesia. As Jakarta is still growing in terms of its population, managing water resources in the city is such a critical aspect of its urban planning. ­One of the key aspects of water resources management is managing the rainfall-runoff relationship in the area. One of the ways of managing it is through modelling the relationship itself which can give an in-depth analysis and its capability for forecasting which can be valuable in water resources management. Various approaches to modelling rainfall-runoff have been developed over the years, which data-driven modelling is one of them. One of the methods is through deep learning, which in this study we will use long short-term memory (LSTM) neural network. This study will use LSTM neural network as a tool to model 9 years (2009-2020) of rainfall data from three rain gauge stations and three discharge gauge stations to train the model. Results from the prediction shows that the LSTM model performed terribly on rainfall datasets, which the highest from the R² values are 0.09 with MAE and RMSE are on 9.7 mm and 18.4 respectively. Performance on runoff datasets shows that LSTM performed on a decent level, which mean from the R², MAE and RMSE are on 0.58, 4.15 m³/s and 8 m³/s respectively. Based on the evaluation results, author suggests that despite of its low level of accuracy, models based on LSTM still have some room for improvement based on their MAE and RMSE value that at least are on a respectable level shown that they could benefit from adding more data as an input for better performance of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>