Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18424 dokumen yang sesuai dengan query
cover
"Oil palm empty fruit bunch (OPEFB) is one of the waste products of oil palm plantations and has not been optimally used in Riau Province, Sumatera, Indonesia. OPEFB is reduced by incineration, which causes pollution problems. However, the combustion of OPEFB generates ash, which is rich in potassium. Moreover, OPEFB fiber has good strength, low cost, low density, and biodegradability, and it can be used as composite reinforcement. However, the natural fibers in composites have poor compatibility with the matrix and relatively high moisture absorption. Hydrolysis of OPEFB ash creates a base solution that can be utilized in an alkaline treatment process to increase the mechanical properties of natural composites.
The aim of this study was to investigate the effect of various extracts of OPEFB ash on the tensile strength, flexural strength, and water absorption of an OPEFB fiber-polypropylene composite. The experimental design used was the Response Surface Method-Central Composite Design (RSM-CCD). The results showed that the tensile strength increased with an increase of fiber length and concentration of the OPEFB ash extract solution, but tensile strength decreased with a longer soaking time. Flexural strength increased with an increase in fiber length but decreased with an increase in the concentration of the OPEFB ash extract solution and longer soaking time. Water absorption increased with lower and higher concentrations of OPEFB ash extract solution and fiber length and with shorter and longer soaking times. The highest tensile strength (20.100 MPa) was achieved at 5%wt alkaline concentration, 36 h soaking time, and 3 cm fiber length. The highest flexural strength (30.216 MPa) was achieved at 5%wt alkaline concentration, 12 h soaking time, and 3 cm fiber length. The lowest water absorption (0.324%) was achieved at 10%wt alkaline concentration, 24 h soaking time, and 2 cm fiber length."
2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Warman Fatra
"Oil palm empty fruit bunch (OPEFB) is one of the waste products of oil palm plantations and has not been optimally used in Riau Province, Sumatera, Indonesia. OPEFB is reduced by incineration, which causes pollution problems. However, the combustion of OPEFB generates ash, which is rich in potassium. Moreover, OPEFB fiber has good strength, low cost, low density, and biodegradability, and it can be used as composite reinforcement. However, the natural fibers in composites have poor compatibility with the matrix and relatively high moisture absorption. Hydrolysis of OPEFB ash creates a base solution that can be utilized in an alkaline treatment process to increase the mechanical properties of natural composites. The aim of this study was to investigate the effect of various extracts of OPEFB ash on the tensile strength, flexural strength, and water absorption of an OPEFB fiber-polypropylene composite. The experimental design used was the Response Surface Method-Central Composite Design (RSM-CCD). The results showed that the tensile strength increased with an increase of fiber length and concentration of the OPEFB ash extract solution, but tensile strength decreased with a longer soaking time. Flexural strength increased with an increase in fiber length but decreased with an increase in the concentration of the OPEFB ash extract solution and longer soaking time. Water absorption increased with lower and higher concentrations of OPEFB ash extract solution and fiber length and with shorter and longer soaking times. The highest tensile strength (20.100 MPa) was achieved at 5%wt alkaline concentration, 36 h soaking time, and 3 cm fiber length. The highest flexural strength (30.216 MPa) was achieved at 5%wt alkaline concentration, 12 h soaking time, and 3 cm fiber length. The lowest water absorption (0.324%) was achieved at 10%wt alkaline concentration, 24 h soaking time, and 2 cm fiber length."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:6 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Faisal
"The combination of
baffled air flotation and a membrane system for the treatment of palm oil mill
effluent (POME) was studied. The POME was obtained from a palm oil factory in
PTPN I Tanjong Seumantoh, Aceh, Indonesia. Operation variables and conditions,
such as the hydraulic retention time and air flow rates, were varied to find
the optimum process. The air flotation process is able to reduce the
concentration of suspended solids and fats/ oils contained in the wastewater,
which increases the performance of the membrane by reducing clogging. The
results showed that this method was promising for POME treatment. The optimum
organic removal efficiency of the air flotation pretreatment was obtained at
HRT = 5 days and at an air flow rate of 11 L/min. The effluent was subsequently
passed through an anaerobic membrane system to achieve the highest removal
efficiency treatment. The removal efficiency of chemical oxygen demand (COD),
total suspended solids (TSS), turbidity, mixed liquor suspended solids (MLSS),
mixed liquor volatile suspended solids (MLVSS), and fats/oils after passing
through the membrane system were 97%, 93.9%, 99.8%, 94.5%, 96.2%, and 99.9%,
respectively. The results also showed that the pH could be neutralized to 6.18,
while a dissolved oxygen (DO) level of 1.60 mg/L could be achieved. A high
quality of effluent was obtained, which met the standards for POME effluent."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Alif Azwan Abdul Wahab
"This study was aimed to
determine the reaction stoichiometry between Cu(II) and di-2-ethylhexylphosphoric
acid (D2EHPA) in Waste Palm Cooking
Oil (WPCO). The stoichiometry was computed based on
the following
experimental
methods, namely slope analysis, loading test and Job?s
method. Slope analysis was used to measure the variation of the distribution coefficient"
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Yuswan Muharam
"The research aims to scale up a small-scale stirred batch reactor to a large-scale stirred batch reactor in order to degum crude palm oil for use as a raw material in biodiesel production. The scale-up is based on the similarity of fluid Reynolds numbers in the two differently sized reactors. To achieve this aim, computational fluid dynamic modeling and simulations of the two reactors were performed. A small-scale palm oil degumming process was carried out in a 250 cc autoclave reactor using a magnetic stirrer at 500 rpm. The simulation results of this small reactor yielded a fluid Reynolds number in the range of 5 to 3,482. The large-scale reactor proposed in this research is 1.25 m3 in volume and is equipped with two impellers: a pitched blade impeller and a Rushton turbine impeller. The pitched blade impeller is placed over the Rushton turbine impeller. They are rotated at 100 rpm. Under this setting and operation, the resulting fluid Reynolds number was in the range of 486 to 202,000. This result indicates that the large-scale reactor was able to reproduce the reaction performance obtained in the small-scale reactor."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Nirattisak Khongthon
"The definition of the physical and mechanical
properties of sugarcane trash pellets were necessary for the design
considerations relating to storage, handling and
processing equipment. The mixing ratios of ground
sugarcane trash:cassava starch:water content (1.0:0.25:0.85 and 1.0:0.25:1.40 by weight) and pelleting speeds (100, 120, 140, and 160 rpm) were considered to determine their effects on bulk
density, true density, porosity, durability and compressive strength. The results show that the mixing ratio by
weight of 1.0:0.25:0.85 and pelleting speed of 120
to 140 rpm were optimum for producing the sugarcane trash pellets. At the moisture content of 12.01% (wb), the bulk density, true density, durability and compressive strength
of biomass pellets were in the range of
330.93 to 365.00 kg/m3, 860.38 to 918.43 kg/m3, 99.34 to 99.46 % and 5.15 to 6.43 MPa, respectively."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Suryadi
"The present
study investigated the mechanical properties and microstructure of ultrafine
grained (UFG) brass processed by four passes of equal channel angular pressing
(ECAP) and annealed at elevated temperatures. The mechanical properties of all
samples were assessed using tensile and micro-hardness tests. Microstructure
analysis was performed using optical microscopy (OM) and scanning electron
microscopy (SEM). Ultimate tensile strengths (UTS) and yield strengths (YS) of
878 and 804 MPa, respectively, ductility of 15%, and hardness of 248 HV were
obtained for samples processed by four passes of ECAP with equivalent true
strain of 4.20. Annealing at 300°C caused UTS and YS to decrease significantly,
to 510 and 408 MPa, respectively, ductility to increase to 28%, and hardness to
decrease to 165 HV. Fractography analysis of un-annealed samples after four
ECAP passes showed small brittle fractures with shallow dimpling. Ductile
failures were found on annealed samples. After four ECAP passes, the
microstructure of un-annealed samples was UFG and dominated by lamellar grain
with shear band. In contrast, after annealing, the microstructure changed due
to recrystallization, showing nucleation and grain growth."
2017
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
S. Abdulkareem
"This paper reports on
the investigation of thermal properties of Kapok, Coconut fibre and Sugarcane
bagasse composite materials using molasses as a binder. The composite materials were moulded into
12 cylindrical samples using Kapok, Bagasse, Coconut fibre, Kapok and Bagasse
in the ratios of (70:30; 50:50 and 30:70), Kapok and Coconut fibre in the
ratios of (70:30; 50:50 and 30:70), as well as a combination of Kapok, Bagasse
and Coconut fibre in ratios of (50:10:40; 50:40:10 and 50:30:20). The sample size is a 60 mm
diameter with 10?22 mm thickness compressed at a constant load of 180 N using a Budenberg
compression machine. Thermal conductivity and diffusivity tests were carried
out using thermocouples and the
results were read out on a Digital Multimeter MY64 (Model:
MBEB094816), while
a Digital fluke K/J thermocouple meter PRD-011 (S/NO 6835050) was used to obtain the
temperature measurement for diffusivity. It was observed that of all the twelve
samples moulded, Bagasse, Kapok plus Bagasse (50:50), Kapok plus Coconut fibre
(50:50) and Kapok plus Bagasse plus Coconut fibre (50:40:10) has the lowest
thermal conductivity of 0.0074, 0.0106, 0.0132, and 0.0127 W/(m-K) respectively
and the highest
thermal resistivity. In this regard, Bagasse has the lowest thermal
conductivity followed by Kapok plus Bagasse (50:50), Kapok plus Bagasse plus
Coconut fibre (50:40:10) and Kapok plus Coconut fibre (50:50)."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Adel Fisli
"The main problem with the slurry process is the difficulty in recovering the photocatalyst nanoparticle from water following purification. An alternative solution proposed the photocatalyst be immobilized on magnetic carriers, which would allow them to be recollected from the water suspension following treatment using an external magnetic field. Magnetically photocatalyst composites were prepared using simple heteroagglomeration by applying attractive electrostatic forces between the nanoparticles with an opposite surface charge. The Fe3O4/SiO2/TiO2 photocatalysts were synthesized in an aqueous slurry solution containing Fe3O4/SiO2 and TiO2 nanoparticles under pH 5 conditions. Meanwhile, Fe3O4/SiO2 was prepared by a simple procedure via a coprecipitation of iron(II) and iron(III) ion mixtures in ammonium hydroxide and was leached by sodium silicate. The synthesized samples were investigated to determine the phase structure, the magnetic properties, and the morphology of the composites by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), respectively. The results indicated that the composites contained anatase and rutile phases and exhibited a superparamagnetic behavior. Fe3O4/SiO2 particles, which were of the aggregation spherical form at 20 nm in size, were successfully attached onto the TiO2 surface. The catalytic activity of Fe3O4/SiO2/TiO2 composites was evaluated for the degradation of methylene blue under ultraviolet (UV) irradiation. The presence of SiO2 as a barrier between Fe3O4 and TiO2 is not only improves the photocatalytic properties but also provides the ability to adsorb the properties on the composite. The Fe3O4/SiO2/TiO2 (50% containing TiO2 in composite) were able to eliminate 87.3% of methylene blue in water through the adsorption and photocatalytic processes. This result is slightly below pure TiO2, which is able to degrade 96% of methylene blue. The resulting Fe3O4/SiO2/TiO2 composite exhibited an excellent ability to remove dye from water and it is easily recollected using a magnetic bar from the water. Therefore, they have high potency as an efficient and simple implementation for the dye effluent decolorization of textile waste in slurry reactor processes."
2017
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Korb Srinavin
"It is widely use of
air-conditioning systems in Thailand due to its location. It is located in a
tropical zone with relatively high temperatures all year round, with high
humidity and high intensity of sunlight. In order to save electrical energy for
air-conditioning systems, preventing heat transfer into the building is
required. The objective of this study is to investigate the physical and
thermal properties of concrete blocks. An attempt is made to increase heat
resistance of concrete blocks. Foam beads (0-0.30% by weight) and kaolin (0-70% by weight) were
added in concrete block mixture to increase discontinuous voids in concrete.
Compressive strength and water absorption of concrete blocks were tested. The
testing results indicated that compressive strength decreased when foam beads
and kaolin were added. Water absorption increased when foam beads were added.
In contrast, the more kaolin added the less water absorption. The thermal
conductivity coefficient of concrete blocks was also investigated. The results
confirmed that the higher the amount of foam beads or kaolin added, the higher
the thermal resistance of concrete blocks. Thermal time-lag behavior was also
investigated. The results indicated that concrete block with kaolin took the
longest time in heating and took the shortest time in cooling. These properties
are good for heat prevention in hot climate regions. These concrete blocks
which were developed and tested in this research conform to the Thai Industrial
Standard. Finally, it can be concluded that because of its thermal behavior,
concrete block with kaolin is a suitable energy-saving concrete block for hot
and humid climates."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>