Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10943 dokumen yang sesuai dengan query
cover
Muhammad Taufiq Suryantoro
"In 2016, the mandatory use of biodiesel as a substitute fuel by up to 20%,
as introduced by the Indonesian Ministry of Energy and Mineral Resources,
forced vehicle manufacturers to invent suitable engines that would accept
biodiesel. The use of biodiesel in such a large proportion is highly risky,
particularly due to the formation of deposits in the combustion chamber
engines. The previous method of fuel droplets are placed on a hot plate
approach produces deposits are slightly different from those generated by a
real engine, therefore to obtain realistic deposits it is necessary to modify
this method so temperatures as hot as those in a real engine. In this study,
the potential deposit formation of biodiesel fuel was examined by conducting
the deposition process and the evaporation of fuel on a stainless-steel plate
(SS), which was placed in a closed space. Deposit characterization was carried out
on a hot plate using Scanning Electron Microscopy (SEM). The test results showed
differences in the structures of the deposits produced by biodiesel and diesel
fuel; fine structures were seen in the former, while those of the latter were
rougher and more porous. Deposit results that are similar to what is seen in a
real engine will be very helpful for knowing the patterns, structures, and mechanism
of the formation of deposits in such an environment."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Taufiq Suryantoro
"In 2016, the mandatory use of biodiesel as a substitute fuel by up to 20%, as introduced by the Indonesian Ministry of Energy and Mineral Resources, forced vehicle manufacturers to invent suitable engines that would accept biodiesel. The use of biodiesel in such a large proportion is highly risky, particularly due to the formation of deposits in the combustion chamber engines. The previous method of fuel droplets are placed on a hot plate approach produces deposits are slightly different from those generated by a real engine, therefore to obtain realistic deposits it is necessary to modify this method so temperatures as hot as those in a real engine. In this study, the potential deposit formation of biodiesel fuel was examined by conducting the deposition process and the evaporation of fuel on a stainless-steel plate (SS), which was placed in a closed space. Deposit characterization was carried out on a hot plate using Scanning Electron Microscopy (SEM). The test results showed differences in the structures of the deposits produced by biodiesel and diesel fuel; fine structures were seen in the former, while those of the latter were rougher and more porous. Deposit results that are similar to what is seen in a real engine will be very helpful for knowing the patterns, structures, and mechanism of the formation of deposits in such an environment."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 7:4 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Tresna Priyana Soemardi
"This study aimed to determine the effect of using acrylonitrile butadiene styrene in place of conventional wax material on treatment pattern removal in the investment casting process. There are three controllable process variables that can affect treatment pattern removal, which include temperature increase, holding time and the number of layers of ceramic shell that have been considered for comparison. Comparison among the effects of temperature increase, holding time and numbers of ceramic shell layers on the ceramic shell was analyzed using ANOVA. It was found that temperature increase (Tx), holding time (t) and number of layers of ceramic shell (N) contribute significantly to the length of the crack (l) on the ceramic shell. The crack in the ceramic shell?s surface was analyzed using scanning electron microscope photos. Less layers number cause the increase of crack length. The combination between temperature upraise and longer holding time cause cracking delay. The experimental is conducted by using 3 (three) variants for each of layers number, temperature and holding time. The layers number is ranging between 7-9 layers. Temperature increase from room temperature until 1300oC. The layers number variant is ranging between 180-300 seconds. It was concluded that a longer holding time will result in a more intact ceramic shell, as longer holding times yield short crack lengths."
2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Tri Arini
"Transparent conducting oxide (TCO) glasses play an important role in
various technology, including dye sensitized solar cells. One of the most
commonly used glass is indium tin oxide (ITO) glass, which is expensive.
Therefore, the main
purpose of this research was to determine if ITO glass can be replaced with
fluorine-doped tin oxide (FTO) glass,
which is easier and more economic to manufacture. For this purpose, a tin
chloride dehydrate (SnCl2.2H2O)
precursor was doped with ammonium
fluoride (NH4F) using a
sol-gel method and spray pyrolysis technique to
investigate the fabrication process for conductive
glass. NH4F was
doped at a ratio of 2 wt% in the SnCl2.2H2O precursor at
varying deposition times (10, 20, and 30 minutes) and substrate temperatures
(250, 300, and 350°C). The
results revealed that longer deposition times created thicker glass layers with
reduced electrical resistivity. The highest optical
transmittance was 75.5% and the lowest resistivity
was 3.32´10-5 Ω.cm,
obtained from FTO glass
subjected to a 20-minute deposition time at deposition temperature of 300oC."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muksin Saleh
"In this study, modeling of the crossing point temperature (CPT) phenomenon in the low-temperature oxidation of coal was carried out using COMSOL Multiphysics®. Low-temperature oxidation can lead to spontaneous combustion of coal stockpiles. The CPT phenomenon was modeled with the kinetics data obtained from a prior laboratory experimental study. The coupling of the heat-transfer phenomenon through conduction and convection determined the thermal evolution model. In this case, coal received the initial heat of the oven temperature increases. As the coal temperature rose, the heat generated from oxidation was released into the environment via conduction and convection. Meanwhile, oxidation products and oxygen were transferred by convection and diffusion. The effects of moisture and the humidity were not considered. The outcomes of modeling were validated through comparison with the results of experimental tests, and the modeling result agreed well with the experiment tests, with temperature deviations of about 0.9%. The effects of airflow rate, oxygen concentration, porosity, and the initial temperature on low-temperature coal oxidation were also examined."
2017
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Adel Fisli
"The main problem with the slurry process is the difficulty in recovering the photocatalyst nanoparticle from water following purification. An alternative solution proposed the photocatalyst be immobilized on magnetic carriers, which would allow them to be recollected from the water suspension following treatment using an external magnetic field. Magnetically photocatalyst composites were prepared using simple heteroagglomeration by applying attractive electrostatic forces between the nanoparticles with an opposite surface charge. The Fe3O4/SiO2/TiO2 photocatalysts were synthesized in an aqueous slurry solution containing Fe3O4/SiO2 and TiO2 nanoparticles under pH 5 conditions. Meanwhile, Fe3O4/SiO2 was prepared by a simple procedure via a coprecipitation of iron(II) and iron(III) ion mixtures in ammonium hydroxide and was leached by sodium silicate. The synthesized samples were investigated to determine the phase structure, the magnetic properties, and the morphology of the composites by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), respectively. The results indicated that the composites contained anatase and rutile phases and exhibited a superparamagnetic behavior. Fe3O4/SiO2 particles, which were of the aggregation spherical form at 20 nm in size, were successfully attached onto the TiO2 surface. The catalytic activity of Fe3O4/SiO2/TiO2 composites was evaluated for the degradation of methylene blue under ultraviolet (UV) irradiation. The presence of SiO2 as a barrier between Fe3O4 and TiO2 is not only improves the photocatalytic properties but also provides the ability to adsorb the properties on the composite. The Fe3O4/SiO2/TiO2 (50% containing TiO2 in composite) were able to eliminate 87.3% of methylene blue in water through the adsorption and photocatalytic processes. This result is slightly below pure TiO2, which is able to degrade 96% of methylene blue. The resulting Fe3O4/SiO2/TiO2 composite exhibited an excellent ability to remove dye from water and it is easily recollected using a magnetic bar from the water. Therefore, they have high potency as an efficient and simple implementation for the dye effluent decolorization of textile waste in slurry reactor processes."
2017
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Azizollah Khormali
"As a result of
waterflooding, inorganic salt precipitation occurs in the different parts of an
oil production system, thereby leading to damage of production equipment.
Different parameters affect the kinetics of salt precipitation. Scale
inhibitors are widely used to prevent inorganic salt formation. In this study,
the effect of reservoir pressure, temperature, and mixing ratio of injection to
formation water on calcium sulfate and barium sulfate precipitation was
investigated. For this purpose, two different formation waters and one
injection water were used. In addition, the effect of temperature and mixing
ratio on inhibition performance was studied. Four different existing industrial
scale inhibitors and one new scale inhibitor were used. The performance of the
scale inhibitors was determined under static and dynamic conditions. Results of
the study showed that calcium sulfate precipitation increased with an increase
in temperature and a decrease in pressure. Barium sulfate precipitation was
found to increase with a decrease in the temperature. The effect of pressure on
barium sulfate formation was negligible. The developed scale inhibitor showed
the highest performance for the prevention of calcium sulfate and barium
sulfate formation. A change in temperature from 60°C to 120°C reduced the
inhibitor performance by 3%. In the cases of calcium sulfate and barium
sulfate, the minimum performance of the scale inhibitor was observed when the
mixing ratios of injection to formation waters were 60:40 and 50:50,
respectively."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Talib Hussain
"A
vacuum drying system is being designed and developed at National Institute of
Vacuum Science & Technology (NINVAST) to dry various materials under vacuum
conditions. Its performance and capabilities are tested by carrying out
different experiments on green (freshly cut) wood samples of Poplar and
Eucalyptus with dimensions of 990.6 mm x 76.2 mm x 25.4 mm and 469.9 mm x 50.8
mm x 25.4 mm, respectively. These samples were dried from green moisture
content (MC) 78% to 10% by this system at ultimate vacuum of about 1.6 x 103
pascal and at a temperature ranging from 35oC to 55oC for
about 20 hrs. Drying quality tests included: prong test, warp measurement,
surface checking and moisture content measurement, which were all performed.
The resulting wood samples showed no dislocation and no excessive stress
buildup. If compared to ordinary drying process, the vacuum drying is rapid and
the drying rate increases with rise in temperature. The designed system is
beneficial for commercial use."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ahmed Ben Mohamed
"The Aluminum 7075 (Al 7075) alloy is a precipitation hardening material instead of a strain hardening material. These mechanical properties are of a particular microstructure obtained by thermo-mechanical treatments. Among other things, this is a complicated microstructure which is responsible for the mechanical performance. The evolution of the mechanical properties of aluminum alloys is dependent on aging time parameters after heat treatment. In this study, the material has undergone a tempering heat treatment followed by a series of tensile tests. The experimental data (tensile curves in three directions during maturation time) is used to describe the evolution of the mechanical characteristics in terms of loading directions and maturation time, denoted respectively as: Ψ and t. The tensile curves are the source of data to begin the problem of identifying the behavior law of studied material using Barlat?s model and Hollomon?s isotropic hardening law. Thus, from the identified parameters (anisotropy coefficients and hardening coefficients), the evolution of the Lankford coefficient, deformation rate and load surfaces during the maturation time for three load directions (0°: rolling direction, 45° and 90°) are described. This study allows optimizing the response of the aluminum alloy to plastic strains, resulting from forming processes measured against the best time during maturation and the best load direction."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
P. Rukmani
"In recent times, the demand for the real time audio and video applications in wireless networks is very high due to widespread use of latest wireless communication technologies. Many of these applications require different Quality of Service (QoS) in terms of delay and throughput in the resource constrained wireless networks. In order to handle the resources effectively and to increase the QoS, proper packet scheduling algorithms need to be developed. Low-latency Queuing (LLQ) is a packet scheduling algorithm which combines Strict Priority Queuing (SPQ) to Class-Based Weighted Fair Queuing (CB-WFQ). LLQ places delay sensitive applications such as voice and video in the SPQ and treat them preferentially over other traffic by allowing the application to be processed and sent first from the SPQ. In this paper, an Enhanced LLQ (ELLQ) is proposed. An additional SPQ is introduced for scheduling the video applications separately along with the dedicated SPQ for voice applications. The performance of the proposed algorithm is compared with other existing algorithms through simulations using the OPNET modeler. Simulation and Statistical results show that the proposed algorithm has given 1.5 times performance improvement in terms of throughput and delay than the existing algorithms for the real time audio and video applications."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>