Ditemukan 5468 dokumen yang sesuai dengan query
Huber, Peter J.
"Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition."
Philadelphia: Society for Industrial and Applied Mathematics, 1996
e20448590
eBooks Universitas Indonesia Library
Blank, Leland T.
New York, NY: McGraw-Hill, 1980
519.5 BLA s
Buku Teks Universitas Indonesia Library
Csorgo, Miklos
"Provides a comprehensive theory of the approximations of quantile processes in light of recent advances, as well as some of their statistical applications."
Philadelphia: Society for Industrial and Applied Mathematics, 1983
e20451084
eBooks Universitas Indonesia Library
Huber, Peter J.
New York: John Wiley & Sons, 1981
519.5 HUB r
Buku Teks Universitas Indonesia Library
Barndorff-Nielsen, Ole E.
Chichester: John Wiley & Sons, 1978
519.5 BAR i
Buku Teks Universitas Indonesia Library
O`Gorman, Thomas W.
"Adaptive statistical tests, developed over the last 30 years, are often more powerful than traditional tests of significance, but have not been widely used. To date, discussions of adaptive statistical methods have been scattered across the literature and generally do not include the computer programs necessary to make these adaptive methods a practical alternative to traditional statistical methods. Until recently, there has also not been a general approach to tests of significance and confidence intervals that could easily be applied in practice.
Modern adaptive methods are more general than earlier methods and sufficient software has been developed to make adaptive tests easy to use for many real-world problems. Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals introduces many of the practical adaptive statistical methods developed over the last 10 years and provides a comprehensive approach to tests of significance and confidence intervals. It shows how to make confidence intervals shorter and how to make tests of significance more powerful by using the data itself to select the most appropriate procedure.
Adaptive tests can be used for testing the slope in a simple regression, testing several slopes in a multiple linear regression, and for the analysis of covariance. The increased power is achieved without compromising the validity of the test, by using adaptive methods of weighting observations and by using permutation techniques. An adaptive approach can also be taken to construct confidence intervals and to estimate the parameters in a linear model. Adaptive confidence intervals are often narrower than those obtained from traditional methods and maintain the same coverage probabilities."
Philadelphia : Society for Industrial and Applied Mathematics, 2004
e20443005
eBooks Universitas Indonesia Library
Chase, Clinton I.
New York: McGraw-Hill, 1984
519.5 CHA e
Buku Teks Universitas Indonesia Library
Ngantung Erland Jeremia
"Analisis regresi adalah salah satu metode yang digunakan dalam menganalisisdata. Metode yang sering digunakan untuk menaksir parameter dalam modelregresi linier adalah ordinary least square OLS. Metode OLS akan memberikantaksiran terbaik ketika semua asumsinya terpenuhi. Namun pada kenyataannya,asumsi tersebut seringkali tidak terpenuhi. Asumsi yang seringkali tidak terpenuhiadalah adanya multikolinieritas dan adanya pencilan outlier. Multikolinieritasakan membuat variansi taksiran parameter regresi menjadi sangat besar, sedangkanoutlier akan membuat taksiran parameter menjadi bias. Jika kedua pelanggaranasumsi ini terjadi pada data yang akan dianalisis digunakan robust jackknife ridgeregression. Robust jackknife ridge regression adalah regresi yang punya sifatrobust sehingga tidak terpengaruh oleh outlier dan menggunakan metode ridgeuntuk mengatasi masalah multikolinieritas serta menggunakan metode jackknifeuntuk mereduksi bias yang dihasilkan metode ridge. Metode yang digunakanuntuk mencapai sifat robust adalah MM-estimation sehingga taksiran yangdihasilkan punya breakdown point serta efficiency yang tinggi.
Regression Analysis is one of many methods used for analyzing data. Method thatusually used for estimating parameter in linear regression model is ordinary leastsquare OLS . OLS will give best estimator when all the assumptions are met. Butin reality, sometimes not all the assumptions are met. Assumptions that usuallyviolated are multicollinearity and outlier. Multicollinearity will make variance ofthe estimated parameter become large, while outlier will make the estimatedparameter become biased. If this two violation of assumptions happened, robustjackknife ridge regression is used. Robust jackknife ridge regression is regressionthat have robust property so that it will not affected by outlier and using ridgemethod to handle multicollinearity with jackknife method to reduce biased fromridge method. Method used to achieve robust property is MM estimation so thatthe estimated parameter have high breakdown point and high efficiency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68662
UI - Skripsi Membership Universitas Indonesia Library
Maroof, David Aaron
"[This book brings together applied statistics and the specialized field of neuropsychology to simplify and demystify test results. It shows how to effectively translate psychometric test data into real-world clinical practice., This book brings together applied statistics and the specialized field of neuropsychology to simplify and demystify test results. It shows how to effectively translate psychometric test data into real-world clinical practice.]"
New York: [Springer, ], 2012
e20396341
eBooks Universitas Indonesia Library
Shorack, Galen R.
"Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables. It also includes applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods, and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition."
Philadelphia : Society for Industrial and Applied Mathematics, 2009
e20443049
eBooks Universitas Indonesia Library