Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43370 dokumen yang sesuai dengan query
cover
"Ant-based document clustering is a cluster method of measuring text documents similarity based on the shortest path between nodes (trial phase) and determines the optimal clusters of sequence do-cument similarity (dividing phase). The processing time of trial phase Ant algorithms to make docu-ment vectors is very long because of high dimensional Document-Term Matrix (DTM). In this paper, we proposed a document clustering method for optimizing dimension reduction using Singular Value Decomposition-Principal Component Analysis (SVDPCA) and Ant algorithms. SVDPCA reduces size of the DTM dimensions by converting freq-term of conventional DTM to score-pc of Document-PC Matrix (DPCM). Ant algorithms creates documents clustering using the vector space model based on the dimension reduction result of DPCM. The experimental results on 506 news documents in Indo-nesian language demonstrated that the proposed method worked well to optimize dimension reduction up to 99.7%. We could speed up execution time efficiently of the trial phase and maintain the best F-measure achieved from experiments was 0.88 (88%).
Klasterisasi dokumen berbasis algoritma semut merupakan metode klaster yang mengukur kemiripan dokumen teks berdasarkan pencarian rute terpendek antar node (trial phase) dan menentukan sejumlah klaster yang optimal dari urutan kemiripan dokumen (dividing phase). Waktu proses trial phase algoritma semut dalam mengolah vektor dokumen tergolong lama sebagai akibat tingginya dimensi, karena adanya masalah sparseness pada matriks Document-Term Matrix (DTM). Oleh karena itu, penelitian ini mengusulkan sebuah metode klasterisasi dokumen yang mengoptimalkan reduksi dimensi menggunakan Singular Value Decomposition-Principal Component Analysis (SVDPCA) dan Algoritma Semut. SVDPCA mereduksi ukuran dimensi DTM dengan mengkonversi bentuk freq-term DTM konvensional ke dalam bentuk score-pc Document-PC Matrix (DPCM). Kemudian, Algoritma Semut melakukan klasterisasi dokumen menggunakan vector space model yang dibangun berdasarkan DPCM hasil reduksi dimensi. Hasil uji coba dari 506 dokumen berita berbahasa Indonesia membuk-tikan bahwa metode yang diusulkan bekerja dengan baik untuk mengoptimalkan reduksi dimensi hingga 99,7%, sehingga secara efisien mampu mempercepat waktu eksekusi trial phase algoritma se-mut namun tetap mempertahankan akurasi F-measure mencapai 0,88 (88%)."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information Technology, Department of Informatics Engineering, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muktiari
"ABSTRAK
Pendeteksian topik adalah metode praktis untuk menemukan topik pada suatu koleksi dokumen. Salah satu metodenya adalah metode berbasis clustering yang mana centroid merepresentasikan topik contohnya eigenspace ndash; based fuzzy c ndash; EFCM . Proses clustering pada metode EFCM diimplementasikan pada dimensi yang lebih kecil yaitu ruang eigen. Sehingga akurasi dari proses clustering memungkinkan berkurang. Pada tesis ini, penulis menggunakan metode kernel sehingga proses clustering tersebut dapat diimplentasikan pada dimensi yang lebih tinggi tanpa mentransformasikan data ke ruang tersebut. Simulasi penulis menunjukkan bahwa kernelisasi ini meningkatkan akurasi dari EFCM berdasarkan skor interpretability pada berita online berbahasa Indonesia.

ABSTRACT
Topic detection is practical methods to find a topic in a collection of documents. One of the methods is a clustering based method whose centroids are interpreted as topics, i.e., eigenspace based fuzzy c means EFCM . The clustering process of the EFCM method is performed in a smaller dimensional Eigenspace. Thus, the accuracy of the clustering process may be reduced. In this thesis, we use the kernel method so that the clustering process is performed in a higher dimensional space without transforming data into that space. Author simulations show that this kernelization improves the accuracies of EFCM in term of interpretability scores for Indonesian online news."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50790
UI - Tesis Membership  Universitas Indonesia Library
cover
Saiful Bahri Musa
"One of ways to facilitate process of information retrieval is by performing clustering toward collection of the existing documents. The existing text documents are often unstructured. The forms are varied and their groupings are ambiguous. This cases cause difficulty on information retrieval process. More-over, every second new documents emerge and need to be clustered. Generally, static document clus-tering method performs clustering of document after whole documents are collected. However, per-forming re-clustering toward whole documents when new document arrives causes inefficient clus-tering process. In this paper, we proposed a new method for document clustering with dynamic hierar-chy algorithm based on fuzzy set type-II from frequent item set. To achieve the goals, there are three main phases, namely: determination of keyterm, the extraction of candidates clusters and cluster hierar-chical construction. Based on the experiment, it resulted the value of F-measure 0.40 for Newsgroup, 0.62 for Classic and 0.38 for Reuters. Meanwhile, time of computation when addition of new document is lower than to the previous static method. The result shows that this method is suitable to produce so-lution of clustering with hierarchy in dynamical environment effectively and efficiently. This method also gives accurate clustering result.
Salah satu cara untuk mempermudah proses information retieval adalah dengan melakukan peng-klasteran terhadap koleksi dokumen yang ada. Dokumen teks yang ada seringkali tidak terstruktur, formatnya bervariasi, dan pengelompokannya ambigu. Hal ini menimbulkan kesulitan dalam proses information retrieval. Selain itu, setiap detik dokumen baru bartambah dan perlu untuk dikelompokkan. Pada umumnya, metode pengklasteran dokumen statis melakukan pengklasteran dokumen setelah kese-luruhan dokumen terkumpul. Namun, melakukan pengklasteran ulang terhadap keseluruhan dokumen ketika dokumen baru tiba mengakibatkan proses pengklasteran menjadi tidak efisien. Penelitian ini mengusulkan metode baru untuk pengklasteran dokumen dengan algoritma hierarki dinamis berbasis fuzzy set type-II dari frequent itemset. Untuk mencapai tujuan tersebut, terdapat 3 tahapan utama yang akan dilakukan, yaitu; ekstraksi keyterm, ekstraksi kandidat klaster dan pembangunan hirarki klaster. Berdasarkan eksperimen yang telah dilakukan diperoleh nilai F-Measure 0,40 untuk Newsgroup, 0,62 untuk Classic, dan 0,38 untuk Reuters. Sedangkan waktu komputasi pada saat penambahan dokumen dapat direduksi dibanding dengan metode statis sebelumnya. Hasil percobaan terhadap beberapa dataset koleksi dokumen menunjukkan bahwa metode ini tidak hanya sesuai untuk menghasilkan solusi peng-klasteran secara hirarki dalam lingkungan yang dinamis secara efektif dan efisien, tetapi juga membe-rikan hasil pengklasteran yang akurat."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information Technology, Department of Informatics Engineering, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Suryanto Ang
"Pengelompokan dokumen atau document clustering telah menjadi suatu teknik yang berguna dalam pengorganisasian sekumpulan dokumen. Dengan teknik ini, komputer bisa secara otomatis mengelompokkan sekumpulan dokumen ke dalam kluster-kluster yang cocok yang merepresentasikan data yang ada. Dengan demikian, proses pencarian informasi bisa dilakukan dengan lebih efisien. Telah banyak metode yang dikembangkan untuk mendukung pengelompokan dokumen. Dua diantara metode-metode tersebut adalah Nonnegative Matrix Factorization (NMF) dan Random Projection (RP). Pada penelitian ini, proses pengelompokan dokumen dilakukan dengan metode reduksi dimensi NMF dan RP pada dokumen berbahasa Indonesia. Untuk metode RP, diperlukan tahap tambahan untuk dapat mengelompokkan dokumen. Metode yang digunakan pada tahap ini adalah K-Means. Data yang digunakan pada percobaan adalah artikel media massa. Percobaan dilakukan dengan variasi pada variabel percobaan seperti jumlah kluster, jumlah data, jenis data, dan informasi fitur.
Dari percobaan yang telah dilakukan, terlihat bahwa teknik NMF dan RP dapat diterapkan dalam aplikasi pengelompokan dokumen bahasa Indonesia. Akurasi pengelompokan bisa mencapai 97%. Dari percobaan terlihat juga bahwa teknik NMF menghasilkan akurasi yang lebih tinggi daripada RP dengan kisaran perbedaan sekitar 2%. Ukuran dan jumlah kluster juga mempengaruhi akurasi. Ukuran kluster yang semakin besar menyebabkan peningkatan akurasi sedangkan jumlah kluster yang semakin banyak menyebabkan penurunan akurasi. Dengan ukuran kluster 296 dan jumlah kluster 2 misalnya, akurasi mencapai 96%. Disamping itu, informasi fitur berupa presence merupakan yang paling cocok digunakan karena menghasilkan akurasi yang paling tinggi, juga mencapai 97%. Jumlah fitur yang lebih banyak dan tidak mengandung stopwords juga memberikan akurasi yang lebih tinggi.

Document clustering has been a beneficial technique in organizing documents. With good document clustering technique, computer can automatically group collection of documents into meaningful clusters. The information retrieval process thus can be done eficiently. There have been lots of methods developed in supporting document clustering process. Two of them are Nonnegative Matrix Factorization (NMF) and Random Projection (RP). In this research, document clustering process is conducted on Indonesian documents using both NMF and RP dimensional reduction method. For RP, additional clustering process is required. For this purpose, K-Means is used. Documents used are mass media articles. Experiments are conducted with variation of experiment variables including number of cluster, number of data, types of data, feature, etc.
From the experiments conducted, it can be concluded that NMF and RP technique can be used in document clustering application for Indonesian documents. The accuracy reaches 97%. Experiments also show that NMF yields better accuracy than RP with difference range about 2%. Cluster size and cluster number also influence the accuracy. The bigger the cluster size, the higher the accuracy while the more the cluster number, the lower the accuracy. For example, with cluster size 296 and cluster number 2, the accuracy reaches 96%. Despitefully, using presence as feature is the most appropriate one because it results in the highest accuracy among others, also reaches 97%. In addition, the more the features used and excluding the stopwords, the higher the accuracy will be."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Azmi Jundan Taqiy
"Indonesia sebagai negara kepulauan memiliki lebih dari 17 ribu pulau. Hal ini menyebabkan adanya tantangan tersendri untuk mewujudkan konektivitas antar pulaunya, terutama pada daerah terpencil dan tertinggal. Pelayaran perintis merupakan pelayaran yang disubsidi oleh pemerintah Indonesia dengan tujuan utama meningkatkan perekonomian di daerah terpencil dan tertinggal. Namun saat ini, kinerja pelayaran perintis masih belum optimal untuk mencapai tujuan tersebut. Hal tersebut ditandai dengan lamanya round voyage suatu trayek yang dapat mencapai 14 hari serta rendahnya capaian target voyage pelayaran perintis. Oleh karena itu, perlu adanya evaluasi serta efisiensi rute pelayaran perintis. Salah satu yang dapat dilakukan untuk meningkatkan efisiensi rute pelayaran perintis adalah dengan melakukan re-routing trayek pelayaran perintis. Penelitian ini melakukan re-routing pelayaran perintis di wilayah NTT-Maluku Barat Daya dengan pertama melakukan clustering menggunakan DBSCAN (Density-Based Spatial Clustering of Applications with Noise) serta optimasi dengan pendekatan TSP (Travelling Salesman Problem). Hasil yang didapatkan adalah terdapat pengurangan dari rata-rata jarak tempuh trayek pelayaran perintis sebesar 55% (dari 1276 NM menjadi 569,3 NM) serta pengurangan angka rata-rata lama round voyage trayek sebesar 74% (dari 13,3 hari menjadi 3,5 hari). Selain itu, terjadi penurunan ketimpangan antar trayeknya yang dilihat dari nilai jangkauan (range) dari jumlah pelabuhan, jarak tempuh, serta lama round voyage pada trayek pelayaran perintis di wilayah NTT-Maluku Barat Daya.

Indonesia, as an archipelagic country, has more than 17,000 islands. This causes challenges in realizing inter-island connectivity, especially in remote and underdeveloped areas. Pelayaran Perintis is a shipping program that the Indonesian government subsidizes to improve the economy in remote and underdeveloped areas. However, the performance of Pelayaran Perintis is still not optimal for achieving this goal. This is indicated by the length of the round voyage of a route that can reach 14 days and the low achievement of the Pelayaran Perintis voyage target. Therefore, there is a need for evaluation and efficiency of Pelayaran Perintis routes. One thing that can be done to increase the efficiency of Pelayaran Perintis routes is by re-routing Pelayaran Perintis routes. This study re-routes Pelayaran Perintis in the NTT-Maluku Southwest region by first clustering using DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and optimization with the TSP (Travelling Salesman Problem) approach. The results obtained are a reduction in the average mileage for Pelayaran Perintis routes by 55% (from 1276 NM to 569.3 NM) and a reduction in the average length of round voyage routes by 74% (from 13.3 days to 3, 5 days). In addition, there has been a decrease in inequality between routes, which can be seen from the range value of the number of ports, distance traveled, and round voyage length on Pelayaran Perintis routes in the NTT-Southwest Maluku region.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ika Alfina
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2000
S26949
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eryawan Deise Ulul
"[ABSTRAK
Hierarchical clustering merupakan metode yang efektif dalam membentuk pohon
filogenetik dengan mengetahui matriks jarak antar barisan DNA. Salah satu cara
untuk membuat matriks jarak yaitu dengan cara menggunakan metode -mer.
Kelebihan dari metode -mer yaitu lebih efisien dalam segi waktu. Langkahlangkah
dalam membuat matriks jarak dengan metode -mer dimulai dengan
membentuk -mer sparse matrix dari masing barisan DNA. Selanjutnya,
membentuk -mer singular value vector. Pada tahap akhir yaitu menghitung jarak
antar vektor. Pada tesis ini akan dilakukan analisis terhadap barisan DNA MERSCoV
dengan mengimplementasi Hierarchical clustering menggunakan -mers
sparse matrix sehingga dapat diketahui leluhur dari masing-masing barisan DNA
MERS-CoV.

ABSTRACT
Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV., Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV.]"
2015
T44260
UI - Tesis Membership  Universitas Indonesia Library
cover
Wishnu Hardi
"The Australian Embassy in Jakarta stores a wide array of media release document. Analyzing particular and vital patterns of the documents collection is imperative as it may result new insights and knowledge of significant topic groups of the documents. K-Means algorithm was used as a non-hierarchical clustering method which partitioning data objects into clusters. The method works through minimizing data variation within clusters and maximizing data variation between clusters. Of the documents issued between 2006 and 2016, 839 documents were examined in order to determine term frequencies and generate clusters. Evaluation was conducted by nominating an expert to validate the cluster result. The result showed that there were 57 meaningful terms grouped into 3 clusters. “People to people links”, “economic cooperation”, and “human development” were chosen to represent topics of the Australian Embassy Jakarta media releases from 2006 to 2016. Text mining can be used to cluster topic groups of documents. It provides a more systematic clustering process as the text analysis is conducted through a number of stages with specifically set parameters."
Jakarta: Pusat Jasa Perpustakaan dan Informasi, 2019
020 VIS 21:1 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Rilo Chandra Pradana
"

Pendeteksian topik adalah teknik untuk memperoleh topik-topik yang dikandung oleh suatu data tekstual. Salah satu metode untuk pendeteksian topik yaitu dengan menggunakan clustering. Namun, secara umum metode clustering tidak menghasilkan cluster yang efektif bila dilakukan pada data yang berdimensi tinggi. Sehingga untuk memperoleh cluster yang efektif perlu dilakukan reduksi dimensi pada data sebelum dilakukan clustering pada ruang fitur yang berdimensi lebih rendah. Pada penelitian ini, digunakan suatu metode bernama Deep Embedded Clustering (DEC) untuk melakukan pendeteksian topik. Metode DEC bekerja untuk mengoptimasi ruang fitur dan cluster secara simultan. Metode DEC terdiri dari dua tahap. Tahap pertama terdiri dari pembelajaran autoencoder untuk memperoleh bobot dari encoder yang digunakan untuk mereduksi dimensi data dan k-means clustering untuk memperoleh centroid awal. Tahap kedua terdiri dari penghitungan soft assignment, penentuan distribusi bantuan untuk menggambarkan cluster di ruang data, dan dilanjutkan dengan backpropagation untuk memperbarui bobot encoder dan centroid. Dalam penelitian ini, dibangun dua macam model DEC yaitu DEC standar dan DEC without backpropagation. DEC without backpropagation adalah DEC yang menghilangkan proses backpropagation pada tahap kedua. Setiap model DEC pada penelitian ini akan menghasilkan topik-topik. Hasil tersebut dievaluasi dengan menggunakan coherence. Dari penelitian ini dapat dilihat bahwa model DEC without backpropagation lebih baik daripada DEC standar bila dilihat dari waktu komputasi dengan perbedaan coherence antara keduanya yang tidak terlalu jauh.


Topic detection is a technique for obtaining the topics that are contained in a textual data. One of the methods for topic detection is clustering. However, generally clustering does not produce an effective cluster when it is done by using data with high dimension. Therefore, to get an effective cluster, dimensionality reduction is needed before clustering in the lower dimensional feature space. In this research we use DEC method for topic detection. DEC method is used to optimize the feature space and cluster simultaneously. DEC is divided into two stages. The first stage consists of autoencoder learning that obtains the weights of the encoder that used for dimension reduction and k-means clustering to get the initial centroid. The second stage consists of the soft assignment calculation, computing the auxiliary distribution that represents the cluster in the data space, and backpropagation to update the encoder weights and the centroid. In this research, two DEC models are built, namely the standard DEC and DEC without backpropagation. DEC without backpropagation is the DEC which eliminate the backpropagation process in the second stage. Every DEC models will produce topics. The results are evaluated using the coherence measure. From this research, it can be seen that DEC without backpropagation is better than standard DEC in terms of computation time with a slight difference in coherence measure.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khaola Rachma Adzima
"Penerapan algoritma partisi k-means dalam metode HOPACH clustering dalam penelitian ini dilakukan untuk mengelompokkan barisan DNA virus ebola. Proses dimulai dengan mengumpulkan barisan DNA virus ebola yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri menggunakan n-mers frequency. Hasil ekstraksi ciri barisan DNA tersebut dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data masukan. Hasil pengelompokan barisan DNA virus ebola pada penelitian ini diperoleh 8 kelompok dengan nilai MSS (Mean Split Silhouette) minimum 0,50266. Proses clustering pada penelitian ini menggunakan program open source R.

The implementation of k-means partitioning algorithm in HOPACH clustering method in this thesis is used to clustering DNA sequences of ebola viruses. The clustering process is started with collecting DNA sequences of ebola viruses that are taken from GenBank, then performing the extraction of DNA sequences using n-mers frequency. The extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will be used as an input data. As the results, we obtained 8 clusters with minimum MSS (Mean Split Silhouette) 0,50266. The clustering process in this thesis is using the open source program R."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44900
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>