Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16054 dokumen yang sesuai dengan query
cover
"Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT) is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI) for classifying heterogeneous features. We use unsupervised feature transformation (UFT) methods and joint mutual information maximation (JMIM) methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM) algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.
Dataset dengan fitur heterogen dapat mempengaruhi hasil seleksi fitur yang tidak tepat karena sulit untuk mengevaluasi fitur heterogen secara bersamaan. Transformasi fitur adalah cara untuk mengatasi seleksi subset fitur yang heterogen. Hasil transformasi fitur non-numerik menjadi numerik mungkin menghasilkan redundansi terhadap fitur numerik original. Dalam tulisan ini, peneliti mengusulkan sebuah metode untuk seleksi subset fitur berdasarkan mutual information (MI) untuk klasifikasi fitur heterogen. Peneliti menggunakan metode unsupervised feature transformation (UFT) dan metode joint mutual information maximation (JMIM). Metode UFT digunakan untuk transformasi fitur non-numerik menjadi fitur numerik. Metode JMIM digunakan untuk seleksi subset fitur dengan pertimbangan label kelas. Fitur hasil transformasi dan fitur original disatukan seluruhnya, kemudian menentukan subset fitur menggunakan metode JMIM, dan melakukan klasifikasi terhadap subset fitur tersebut menggunakan algoritma support vector machine (SVM). Akurasi klasifikasi diukur untuk sejumlah subset fitur terpilih dan dibandingkan antara metode UFT-JMIM dan Dummy-JMIM. Akurasi klasifikasi rata-rata dari keseluruhan percobaan yang dapat dicapai oleh metode UFT-JMIM sekitar 84.47% dan metode Dummy-JMIM sekitar 84.24%. Hasil ini menunjukkan bahwa metode UFT-JMIM dapat meminimalkan informasi yang hilang diantara fitur hasil transformasi dan fitur original, dan menyeleksi subset fitur untuk menghindari fitur redundansi dan tidak relevan"
Paiton: STT Nurul Jadid Paiton, Department of Informatics, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Yuri Prihantono
"

Pemanfaatan Intrusion Detection System (IDS) untuk mengamankan infrastruktur jaringan internet masih memiliki masalah yang belum terselesaikan, yaitu kurangnya akurasi deteksi serangan sehingga mengakibatkan terjadinya permasalahan false positif dan banyaknya alarm palsu. Salah satu pendekatan yang banyak digunakan untuk mengatasi permasalahan yang terjadi dalam implementasi IDS adalah dengan menggunakan pendekatan machine learning. Pada penelitian ini, penulis mengusulkan sistem yang menggunakan pendekatan machine learning untuk mendeteksi serangan jaringan dan mengirim peringatan serangan. Dataset CSE-CICIDS2018 dan Model-Based Feature Selection digunakan untuk mengevaluasi kinerja delapan algoritma klasifikasi dalam mengidentifikasi serangan jaringan guna menentukan algoritma terbaik. Hasilnya, Model XGBoost dipilih sebagai model yang memberikan hasil kinerja algoritma terbaik dalam perbandingan model machine learning ini, dengan tingkat akurasi untuk klasifikasi two-class sebesar 99%, dan multi-class sebesar 98,4%.


Utilization of the Intrusion Detection System (IDS) to secure internet network infrastructure still has unresolved problems, namely the lack of attack detection accuracy, resulting in false positives and many false alarms. One approach that is widely used to overcome the problems that occur in the implementation of IDS is to use a machine learning approach. In this study, the authors propose a system that uses a machine learning approach to detect network attacks and send attack warnings. The CSE-CICIDS2018 dataset and Model-Based Feature Selection were used to evaluate the performance of eight classifier algorithms in identifying network attacks to determine the best algorithm. As a result, the XGBoost model was chosen as the model that gives the best algorithm performance results in this machine learning model comparison, with an accuracy rate of 99% for two-class classification and 98.4% for multi-class.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nagisa Eremia Anju
"Tenaga kerja kesehatan pada masa pandemi bekerja sebagai garda terdepan yang memiliki resiko tertinggi tertular virus corona. Sampai pada hari ini, perawatan dan pemeriksaan kondisi vital pasien COVID-19 masih banyak dilakukan dengan kontak langsung minimal sebanyak empat kali dalam sehari. Hal ini berisiko meningkatkan penyebaran virus hingga menurunkan jumlah tenaga kerja kesehatan. Sampai pada saat ini, hampir seluruh rumah sakit masih menggunakan sphygmomanometer tradisional dengan cuff yang membutuhkan bantuan tenaga medis ataupun tanpa bantuan, namun pengukuran dilakukan secara invasif. Oleh karena itu, dibutuhkan suatu alat yang dapat memonitor kondisi vital pasien tanpa kontak langsung terutama dalam mengukur tekanan darah dan bersifat noninvasif. Penelitian ini bertujuan untuk membuat suatu algoritma pengolahan sinyal plethysmography berbasis ekstraksi fitur dan machine learning untuk prediksi tekanan darah. Dengan menggunakan sensor MAX30102 dan ESP32, sinyal PPG yang didapat dari jari akan dilakukan pre-processing dengan menenerapkan baseline fitting, kemudian deteksi puncak, hingga empat fitur utama sinyal PPG, yaitu systolic peak, diastolic peak, dicrotic notch, dan foot dapat diekstrak. Data ekstraksi fitur sinyal PPG secara ­real-time ini digabungkan menjadi satu dataset dan dimasukkan ke dalam machine learning untuk diprediksi nilai tekanan darahnya. Evaluasi hasil prediksi tekanan darah menunjukkan nilai Mean Absolute Error yang kecil, yaitu 1,56/2,35 yang masih diterima oleh standar ISO 81060-2:2013 sehingga dapat dijadikan fundamental untuk sistem pengukuran tekanan darah noninvasif.

Health workers during the pandemic act as the frontliner who have the highest risk of contracting the coronavirus. Most of the treatment and examination of the vital condition of COVID-19 patients is carried out with direct contact at least four times a day. This increases the risk of virus spreading, moreover reducing the number of health workers. To date, almost all hospitals still require medical assistance to measure blood pressure using the traditional cuff sphygmomanometer or without assistance however, the measurements are carried out invasively. Therefore, a device that can monitor the patient's vital condition without direct contact, especially in measuring blood pressure and non-invasive is needed. This thesis aims to develop a plethysmography signal processing algorithm based on feature extraction and machine learning for blood pressure prediction. By using the MAX30102 and ESP32 sensors, the PPG signal obtained from the finger will be preprocessed by applying a baseline fitting and peak detection, thus the four main features of the PPG signal, namely systolic peak, diastolic peak, dicrotic notch, and foot can be extracted. This real-time PPG signal feature extraction data is then combined into a single dataset and by using machine learning, blood pressure values are predicted. Evaluation of the blood pressure predictions shows a small Mean Absolute Error value, 1.56/2.35 which meets the ISO 81060-2:2013 standard. Hence, the results demonstrate the applicability of the proposed algorithm in predicting blood pressure and can be developed as a noninvasive real-time blood pressure measurement system in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adawiyah Ulfa
"Pengembangan inhibitor Dipeptidyl Peptidae-4 (DPP-4) sangat diperlukan dalam pengobatan Diabetes Mellitus tipe 2 dengan efek samping yang rendah. Pemodelan hubungan kuantitatif struktur aktivitas (QSAR) merupakan pendekatan analisis hubungan struktur kimia dengan aktivitasnya yang banyak digunakan dalam desain obat penyakit Diabetes. Pada tesis ini, model QSAR klasifikasi dibangun untuk memprediksi struktur aktivitas senyawa pada inhibitor DPP-4 yang dapat memblokir kerja enzim DPP-4. Dalam representasi molekul digunakan circular fingerprint ECFP dan FCFP yang menyajikan notasi SMILES dalam format vektor biner. Fingerprint ECFP dan FCFP yang berdiameter 4 dan 6 sebagai input data dalam membangun model QSAR klasifikasi. Pada QSAR klasifikasi dengan pendekatan deep learning memberikan waktu yang cepat dalam proses virtual screening senyawa aktif atau tidak aktif dalam inhibitor DPP-4. Penelitian ini menggunakan model Hybrid Deep Learning 1D CNN-LSTM untuk memprediksi aktivitas senyawa inhibitor dalam kelas aktif atau tidak aktif berdasarkan nilai aktivitas biologis dengan proporsi data latih dan data uji yang berbeda. Dalam arsitektur 1D CNN-LSTM terdiri dari model 1D CNN sebagai tahap ektraksi fitur dan output dari lapisan konvolusi 1D CNN digunakan dalam lapisan LSTM. Selain itu, pemilihan fitur dengan metode Random Forest-Recursive Feature Elimination (RF-RFE) digunakan untuk memperoleh fitur yang optimal dari dataset ECFP dan FCFP. Selanjutnya, penelitian ini membandingkan performa model dengan menerapkan pemilihan fitur RF-RFE dan tanpa pemilihan fitur RF-RFE. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan Hybrid Deep Learning yaitu 1D CNN-LSTM dengan pemilihan fitur RF-RFE memperoleh performa model yang lebih baik dibandingkan model tanpa pemilihan fitur optimal. Performa model 1D CNN-LSTM dengan pemilihan fitur RF-RFE menggunakan data ECFP_4 dengan proporsi data latih 80% memiliki akurasi sebesar 0.9075, sensitivitas 0.9008, spesifisitas 0.9142, dan nilai MCC 0.8151.

The development of Dipeptidyl Peptidase-4 (DPP-4) inhibitors is urgently needed in the treatment of Type 2 Diabetes Mellitus with low side effects. Activity structure quantitative relationship modeling (QSAR) is an analytical approach to the relationship between chemical structure and activity which is widely used in diabetes drug design. In this thesis, a classification QSAR model was built to predict the structure of the activity of the DPP-4 inhibitor compound that can block the action of the DPP-4 enzyme. In molecular representation, ECFP and FCFP circular fingerprints are used which present SMILES notation in binary vector format. ECFP and FCFP fingerprints with diameters of 4 and 6 as input data in building a classification QSAR model. The QSAR classification with a deep learning approach provides fast time in the virtual screening process for active or inactive compounds in DPP-4 inhibitors. This study uses the Hybrid Deep Learning 1D CNN-LSTM model to predict the activity of inhibitor compounds inactive or inactive classes based on the value of biological activity with different proportions of training data and test data. The 1D CNN-LSTM architecture consists of a 1D CNN model as the feature extraction stage and output of 1D CNN convolution layer is used in the LSTM layer. In addition, feature selection using the Random Forest-Recursive Feature Elimination (RF-RFE) method was used to obtain optimal features from the ECFP and FCFP datasets. Furthermore, this study compares the performance of the model by applying the RF-RFE feature selection and without the RF-RFE feature selection. The results of this study indicate that the classification QSAR model using Hybrid Deep Learning, namely 1D CNN-LSTM with RF-RFE feature selection, obtains better model performance than the model without optimal feature selection. The performance of the CNN-LSTM 1D model with RF-RFE feature selection using ECFP_4 data with a proportion of 80% training data has an accuracy of 0.9075, sensitivity of 0.9008, specificity of 0.9142, and an MCC value of 0.8151.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teguh Setiono
"STEP NC merupakan standar yang relatif baru untuk proses pemesinan. Proses pemesinan konvensional (menggunakan G/ M Codes) membutuhkan sebuah program penterjemah/ konverter agar informasi dari file STEP NC dapat digunakan. Terdapat beberapa program yang dibuat untuk menterjemahkan isi sebuah file STEP NC. Kemampuan program ? program tersebut spesifik untuk sebuah machining feature seperti : PLANAR FACE, ROUND HOLE, dan CLOSED POCKET. Pada penelitian ini algoritma ketiga machining feature tersebut dirangkum dalam sebuah program untuk menterjemahkan sebuah file STEP NC yang berisi ketiga machining feature. Tujuan metode ini adalah integrasi itu sendiri, disamping mempersingkat waktu untuk proses konversi. Proses penterjemahan dibantu program pengelola database berbasis SQL.

STEP NC is a relatively new standard in machining proccess. Conventional machining proccess (Uses G/ M Codes) need a translator / converter in order to use some information from STEP NC file. There are some translator / converter program that made in purpose to translate the content of STEP NC file. These program are available for machining features, such as : PLANAR FACE, ROUND HOLE, and CLOSED POCKET. For those machining features algorithm are combined into one program, used for translating a STEP NC file that contain machining features. The point of this method is integration process itself, beside of to perform shortest time for conversion proccess. Conversion proccess assisted with an SQL based database program."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S37955
UI - Skripsi Membership  Universitas Indonesia Library
cover
Finno Ariandiyudha Hadiwardoyo
"ABSTRAK
Proses permesinan sangat bergantung pada model yang dibuat, semakin rumit model yang didesain makan semakin sulit dan mahal proses permesinannya. Pada penelitian ini dilakukan identifikasi dan rekognisi fitur prismatic dan fitur slab yang telah diklasifikasikan oleh Jong-Yun Jung.
Metode identifikasi fitur hybrid graph dan rule-based yang memanfaatkan file dengan ekstensi .STL yang dikembangkan oleh Sunil dan Pande digunakan sebagai metode dasar untuk mengidentifikasi fitur. Hasil identifikasi fitur kemudian akan diekstrak datanya untuk digunakan dalam menghitung nilai indeks kompleksitas produk dari model yang diteliti. Indeks kompleksitas produk dihitung menggunakan model yang dikembangkan sebelumnya oleh ElMaraghy.
Validasi dilakukan dengan membandingkan hasil hitungan dari perangkat lunak dengan metode penghitungan indeks kompleksitas dengan metode STEP oleh M. Sholeh, kemudian perangkat lunak ini diuji untuk menghitung nilai indeks kompleksitas fitur gabungan. Penggunaan 8 slot dan 8 pocket sebagai acuan pembobotan nilai bentuk memberikan nilai indeks kompleksitas produk yang lebih akurat

ABSTRACT
The machining process is very dependent on the model created, the more complicated models, designed dining increasingly difficult and expensive process of its machinery. In this research, identification and recognition prismatic features and features slab that has been classified by Jong-Yun Jung. Feature recognition method hybrid, graph and rule-based which used .STL extension file developed by Sunil and Pande is used as a basic method to identify features. The results will then be extracted from feature recognition data to be used in calculating the index values the complexity of products on the model that is being studied. This research used complexity index of product which is a model developed earlier by ElMaraghy. Validation is done by comparing the results of the count of the software with complexity index calculation method with STEP method by M. Sholeh, then this software is tested for calculating the index values the complexity of a combined features model. The use of 8 slots and 8 of pocket as a benchmark scoring on shapes give more accurate complexity index product."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66950
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Michellain Millenia Setyowardhani
"Saat ini geosaintis memasuki era big data dan pembelajaran mesin memberikan potensi besar untuk berkontribusi dalam masalah geosains (Karpatne dkk., 2017). Automasi dalam analisis fasies perlu dilakukan untuk meningkatkan keakuratan, juga mengurangi waktu dan biaya dalam kegiatan pengembangan sumur sehingga dapat meningkatkan hasil produksi. Penelitian dilakukan menggunakan data log sumur pengeboran, laporan deskripsi batuan inti, dan deskripsi petrografi di reservoir gas Lapangan X. Akumulasi gas berada di reservoir utama hasil endapan vulkaniklastik pada Formasi Pucangan. Proses pengelompokan dilakukan menggunakan algoritma K-Means dan di analisis menggunakan Cutoff Crossplot. Kemudian dilanjutkan dengan klasifikasi yang dilakukan menggunakan pembelajaran tersupervisi dengan jenis algoritmaSupport Vector Machine (SVM), Random Forest, dan Extreme Gradient Boosting (XGBoost). Lokasi penelitian berada di wilayah kerja Minarak Brantas Gas Inc (MBGI) Kabupaten Sidoarjo, Jawa Timur. Lapangan X terletak pada reservoir vulkaniklastikberumur Pleistosen dan terletak di onshore Cekungan Jawa Timur. Interval produksi berada di bagian bawah yang terendapkan di lingkungan neritik luar atau lingkungan turbiditik. Lapangan X terdiri dari empat fasies yaitu, batulempung, batulanau, batupasirvulkanik, dan batupasir karbonatan. Algoritma pembelajaran mesin yang paling baik digunakan untuk identifikasi fasies pada Lapangan X adalah RandomForest dengan hasil akurasi f1-score tertinggi, dan nilai RMSE (Root Mean Square Error) paling rendah dibandingkan kedua algoritma lain.

Geoscientists are currently entering the era of big data and machine learning provides great potential to contribute to geoscience problems (Karpatne et al., 2017). Automation in facies analysis needs to be done to increase accuracy, also reduce time and costs in well development activities so as to increase production yields. The research was conducted using drilling well log data, core rock description reports, and petrographic descriptions of gas reservoirs in Field X. Gas accumulation is in the main reservoir as a result of volcaniclastic deposits in the Pucangan Formation. The clustering process was carried out using the K-Means algorithm and analyzed using the Cutoff Crossplot. Then proceed with the classification which is carried out using supervised learning with the types of Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting (XGBoost) algorithms. The research location is in the working area of ​​Minarak Brantas Gas Inc. (MBGI) Sidoarjo Regency, East Java. Field X is in a Pleistocene volcaniclastic reservoir and is locatedonshore in the East Java Basin. The production interval is at the bottom which is deposited in an outer neriticenvironment or a turbiditic environment. Field X consists of four facies, namely, claystone, siltstone, volcanic sandstone, and carbonate sandstone. The bestmachine learning algorithm used for faciesidentification in Field X is Random Forest with thehighest f1-score accuracy, and the lowest RMSE (RootMean Square Error) value compared to the other two algorithms.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pohan, Nur Wulan Adhani
"Banyaknya konferensi menyulitkan peneliti memilih konferensi berkualitas. Kemungkinan peneliti tertipu dengan konferensi predator merupakan ancaman nyata yang perlu diperhatikan. Penilaian konferensi umumnya menggunakan pakar yang membutuhkan waktu dan biaya yang tinggi. Penelitian ini fokus untuk menganalisis jika h-indeks, impact factor, jumlah dokumen, dan SJR dapat menghasilkan penilaian kualitas yang sesuai dengan penilaian manual pakar dari beberapa situs penilaian konferensi serta membandingkan hasil performanya dengan penilaian jurnal. Data yang digunakan dikumpulkan dari empat sumber situs web yang mengkalkulasi kualitas konferensi luar negeri, yaitu CORE, ERA/QUALIS, AMiner, dan ScimagoJR. Data untuk penilaian jurnal didapatkan dari Guide2Research. Variabel yang digunakan untuk penilaian adalah h-indeks, jumlah dokumen, impact factor, dan SJR. Penelitian ini menggunakan metode K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayes, dan Decision Tree (DT). KNN menghasilkan nilai akurasi tertinggi sebesar 72,22% dan f1 score senilai 63,06% menggunakan data Qualis dengan faktor h-indeks, IF, dan SJR.

The number of conferences makes it difficult for researchers to choose quality conferences. The possibility of researchers being fooled by predatory conferences is a real threat that deserves attention. Conference assessments generally use experts who require time and money to evaluate the conferences. This study focuses on analyzing whether h-index, impact factor, number of documents, and SJR can produce quality assessments in accordance with expert manual assessments from several conference assessment sites and compare the resulting performance with journal assessments. The data used were collected from four website sources that calculate the quality of overseas conferences, namely CORE, ERA/QUALIS, AMiner, and ScimagoJR. Data for journal assessments were obtained from Guide2Research. The variables used for the assessment are h-index, number of documents, impact factor, and SJR. This research used K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayes, and Decision Tree (DT). KNN produced the highest accuracy value of 72.22% and the f1 score of 63.06% using Qualis data with the h-index, IF, and SJR factors."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aditya Tejabaswara
"Pesatnya perkembangan teknologi disertai dengan tingkat penggunaannya membawa dampak positif di berbagai bidang kehidupan manusia, namun juga dapat membawa dampak negatif jika tidak didukung dengan tanggung jawab pengguna teknologi itu sendiri. Bidang telekomunikasi adalah salah satu bidang yang perkembangannya sangat dirasakan oleh manusia. Salah satu dari perkembangan telekomunikasi adalah lahirnya media sosial. Manusia menggunakan media sosial untuk berbagi informasi apapun kepada siapapun. Namun yang menjadi masalah kemudian adalah apakah informasi yang tersebar merupakan informasi yang nilai kebenarannya telah teruji atau hanya sebuah rumor. Rumor dapat saja mengakibatkan tersebarnya informasi yang salah di suatu golongan atau komunitas manusia.
Adapun topik yang terkait pada tugas akhir ini adalah siak-ng yang menjadi trending topic di media sosial twitter. l. Mengidentifikasi rumor pada media sosial online sangat krusial nilainya karena mudahnya informasi yang disebar oleh sumber yang tidak jelas.
Pada tugas akhir ini akan ditunjukkan salah satu cara pengidentifikasian rumor dengan menggunakan kalkulasi graph edit distance. Graph edit distance merupakan salah satu langkah yang paling cocok untuk menentukan persamaan antar grafik dan pengenalan pola jaringan kompleks. Untuk mencapai tujuan akhir, langkahlangkah yang dilakukan adalah pengambilan data, konversi data, pengolahan data, dan visualisasi. Dengan pengolahan data didapat Sembilan padanan kata antara Parent Node dan Child Node serta 3 kategori edge label. Pada akhirnya ditemukan bahwa rumor sistem siak-ng sedang mengalami load tinggi merupakan rumor yang nilai kebenarannya tinggi.

Rapid development of technology coupled with the utilizing bring positive impact in many areas of human life, but also have negative impacts if not supported with the responsibility of the users. Telecommunications is one area in which development is perceived by humans. One of the development of telecommunications is social media established.Humans use social media to share any information with anyone. However, the issue then is whether the spread of information is information whose truth value has been tested or just a rumor. Rumors will lead to the spread of false information in a group or people's community.
The topics related to this thesis is the SIAK-NG become trending topic on social media Twitter. Identifying online rumors on social media is crucial value because of the information ease spread by unverified sources.
At the end of this assignment will be demonstrated one way of identifying the rumor by using graph edit distance calculations. Graph edit distance is one of the most appropriate steps to determine the similarities between graphs and pattern recognition of complex networks. To achieve the ultimate goal, the steps taken are data retrieval, data conversion, data processing, and visualization. By data processing obtain nine words comparison between Parent node and Child Node with three edge label category. Finally, the tweet that said the system has high range of load was the true rumor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42944
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>